Hat eine Intervention an der Schädelbasis Einfluss auf das Prämenstruelle Syndrom?

Master Thesis zur Erlangung des Grades

Master of Science in Osteopathie

an der Donau Universität Krems-

Zentrum für chinesische Medizin & Komplementärmedizin

niedergelegt

an der Wiener Schule für Osteopathie

von

Mag.^a Silvia Hödl

Krems, 30.6.2011

Statistik von Mag. Dr. Thomas Kästenbauer

Übersetzung von Mag. Höflehner-Schnürch Barbara

Eidesstattliche Erklärung

Hiermit versichere ich, die vorgelegte Masterthese selbständig verfasst zu haben.

Alle Stellen, die wörtlich oder sinngemäß aus öffentlichen oder nicht veröffentlichten Arbeiten anderer übernommen wurden, sind als solche gekennzeichnet. Sämtliche Quellen und Hilfsmittel, die ich für diese Arbeit genützt habe, sind angegeben. Diese Arbeit ist mit gleichem Inhalt weder im In- und Ausland noch keiner anderen Prüfungsbehörde vorgelegen.

Diese Arbeit stimmt mit der von der/dem GutachterIn beurteilten Arbeit überein.

Datum Unterschrift

Zusammenfassung

Hintergrund: Bis zu 80% der Frauen leiden unter prämenstruellen Beschwerden und sind dadurch in ihrem Alltagsleben beeinträchtigt.

Als Ursache wird eine Dysfunktion der Hypothalamus-Hypophysen-Ovarien-Achse auf die Hypophysenhormone Östrogen und Progesteron angenommen. Voraussetzung für eine gute Funktion der Hypophyse ist ein guter Sitz in der Sella turcica der Schädelbasis und ein gut funktionierender primärer respiratorischer Mechanismus (PRM) der Schädelbasis, der am Schädel und im gesamten Körper spürbar sein soll.

Forschungsfrage: Lassen sich durch eine kraniosakrale Intervention, von der man im kranialen Konzept der Osteopathie annimmt, Einfluss auf die Schädelbasis zu nehmen, prämenstruelle Beschwerden beeinflussen?

Studiendesign: Randomisiert kontrollierte Studie

Methode: Insgesamt wurden 20 Patientinnen in die Studie eingeschlossen und in einem Randomisierungsprozess zwei Gruppen zugeteilt. Sie wurden einer Behandlung mit kranialen Techniken (INV, n=10) oder einer Scheinbehandlung (KON, n=10) unterzogen.

Ergebnisse: Bei den mittels Fragebogen erhobenen affektiven und physischen Symptomen konnten zwischen der Interventions- als auch Kontrollgruppe sowie durch die Behandlung mit kranialen Techniken keine signifikanten Veränderungen der Einzelsymptome beobachtet werden (p>0,05). Allerdings wurde durch die Behandlung eine signifikante Reduktion der in Gruppen zusammengefassten affektiven und physischen Symptome in der Interventionsgruppe erreicht (p<0,02).

In der Interventionsgruppe konnten die Schmerzen am Rücken über die ersten zwei Tage (Tag 1 p=0,02, Tag 2 p=0,03) und im Uterus/Abdominalbereich ebenfalls über die ersten beiden Tage signifikant verbessert werden (Tag 1 p=0,001, Tag 2 p=0,03). In der Kontrollgruppe unterschieden sich die Werte für Rücken- und Uterus/Abdominalschmerzen vor und nach Behandlung nicht signifikant.

Diskussion: Die Hypothese, ob durch eine Intervention mit kranialen Techniken an der Schädelbasis die Hypophyse beeinflusst werden kann und somit prämenstruelle

Beschwerden reduziert werden können, konnte bestätigt werden. Die vorliegenden

Ergebnisse lassen einen Effekt kranialer Techniken auf das Hormonsystem

vermuten.

Die Ergebnisse dieser Untersuchung sind für Frauen mit Menstruations-

Beschwerden repräsentativ. Zur Dauer des Therapieerfolges jedoch konnten keine

Aussagen getroffen werden. Eine Nachfolgstudie mit größerer Stichprobenanzahl

und mehrmaligen Behandlungen wäre dazu nötig.

Viele Behandlungstechniken im Rahmen des Modells der kraniosakralen

Osteopathie basieren auf der Annahme, sie würden gewisse Veränderungen an

Strukturen der Schädelbasis induzieren, was wissenschaftlich bisher nicht eindeutig

nachgewiesen werden konnte und deshalb ist ihre Wirksamkeit als spekulativ

anzusehen.

Schlüsselwörter: PMS, Hypophyse, HPO-Achse, SSB, Östrogen, Progesteron,

kraniosakrale Osteopathie.

Abstract

Background: Up to 80% of the female population suffer from premenstrual

syndrome and are thus limited in their daily life.

One of the supposed causes for the problems is a dysfunction of the hypothalamic-

pituitary-ovary axis and its effect on the pituitary hormones estrogen and

progesterone. The precondition for a good functioning pituitary gland is its

unimpaired position in the sella turcica of the cranial base and a well-functioning

primary respiratory mechanism (PRM) of the cranial base, which should be

palpable in the region of the head and the rest of the body.

Research question: Can a cranio-sacral intervention, which according to the

osteopathic concept is supposed have an effect on the cranial base, have an

influence on premenstrual syndrome?

Study design: Randomized controlled study

4

Method: A total of 20 female patients were included in the study and divided into two groups following a randomization procedure. They received either a treatment with cranial techniques (INV, n=10) or a sham treatment (CON, n=10).

Results: Concerning the individual affective and physical symptoms which were evaluated by means of questionnaires, no significant differences could be observed between the intervention group and the control group as well as before and after the treatment (p>0.05). However, a significant reduction of the sumscores of the affective and physical symptoms could be observed in the intervention group (p<0.02).

In addition, the back pain (day 1 p=0.02, day 2 p=0.03) and the pain in the region of the uterus/abdomen (day 1 p=0.001, day 2 p=0.03) could be significantly improved over the first two days in the intervention group. In the control group the values of back pain and uterus/abdominal pain before and after the intervention did not differ significantly.

Discussion: The hypothesis whether an intervention in the region of the cranial base by means of cranial techniques can have an influence on the pituitary gland and thus lead to a reduction of premenstrual problems could be confirmed. The results do suggest an effect that cranial techniques have on the hormone system and the reduction of pre-menstrual pain complaints.

The results of this study are representative of women with menstrual pain. However, results pertaining to the success of therapy in the long-term could not be determined. Further studies involving a larger patient sample and a greater number of treatments would be necessary for that.

Many treatment techniques of the osteopathic cranio-sacral model are based on the assumption that they induce certain changes in the structures of the cranial base, which is scientifically not clearly confirmed. Therefore the effectiveness of such a treatment has to be regarded as speculative.

Key words: PMS, pituitary gland, HPO-axis, SBS, estrogen, progesterone, cranio-sacral osteopathy.

Inhaltsverzeichnis

	Zus	ammentassung / Abstract	3	
1	Einleitung			
2	Mer	Menstruationszyklus		
3	Prämenstruelles Syndrom			
	3.1	Definition	11	
	3.2	Symptome	12	
	3.3	Ätiologie	13	
4	Sch	ädelbasis (Synchondrosis Sphenobasilaris/SSB)	15	
5	Hypothalamus und Hypophyse			
	5.1	Steuerung und Wirkung der Hormonsekretion	20	
	5.2	Übertragungswege der Hormone	22	
6	The	rapie des Prämenstruellen Syndroms	23	
7	Das kraniale Konzept in der Osteopathie			
	7.1	Primär Respiratorischer Mechanismus (PRM)	26	
	7.2	Faszien	29	
8	Methodologie			
	8.1	Auswahlkriterien	34	
	8.2	Fragebogen	34	
	8.3	Ablauf	35	
9	Ergebnisse		37	
10	Diskussion		50	
11	Schlussfolgerung 5		52	
12	Abbildungsverzeichnis		54	
13	Literaturverzeichnis		55	
	Anhang		60	
	14.1 Fragebogen		60	
	14.2 Statistische Analysen		65	
15	Eng	English edited version10		

1 Einleitung

Prämenstruelle psychische und physische Veränderungen treten bei 80% aller Frauen im gebärfähigen Alter auf und werden als Prämenstruelles Syndrom (PMS) bezeichnet¹. Davon sind 3-8% in ihrem Alltagsleben schwer beeinträchtigt². Frauen mit PMS sind 9-mal mehr in Bezug auf Partnerschaft, Familienleben, Hobbies und Arbeitswelt beeinträchtigt³.

Die genauen Ursachen des prämenstruellen Syndroms sind bisher nicht vollständig geklärt. Als Ursache wird eine Dysfunktion der Hypothalamus-Hypophysen-Ovarien-Achse (HPO-Achse) angenommen⁴, wobei Störungen im Zusammenspiel zwischen Hypothalamus, Hypophyse und Ovarien, in deren zyklischem Prozess das follikelstimulierende Hormon (FSH), luteinisierende Hormon (LH), Estradiol und Progesteron gebildet werden, verstärkte Gewebsreaktionen auslösen können⁵. Estradiol und Progesteron beeinflussen die Transmission des Serotonins, das als Modulator für Stimmung und Befindlichkeit im Zentralnervensystem bekannt ist⁶.

Die Hypophyse liegt in der Sella turcica des Os sphenoids und ist Zentralstelle der humoralen Regelung. Ein guter Sitz der Hypophyse in der Sella turcica ist Voraussetzung für eine gute Funktion der Hypophyse entlang der HPO-Achse. Veränderungen der feinen Beweglichkeit des Os sphenoids und Spannungszustände des Diaphragma sellae, die die Sella turcica auskleidet, könnten die Funktion der Hypophyse beeinflussen⁷.

Studien konnten eine hohe Prävalenz von Hypophyseninsuffizienz nach Fraktur der Sella turcica ohne Hypophysenbeteiligung nachweisen⁸. Hier wurde ein möglicher Zusammenhang zwischen Schädelbasis (SSB) und Hypophyse hergestellt, der allerdings im kranialen Konzept wissenschaftlich schwer zu belegen ist.

¹ CLAYTON/KELLER/LESLIE/EVANS 2006

² TSCHUDIN 2009

³ HALBREICH ET AL 2007

⁴ MILEWICZ/JEDRZEJUK 2006

⁵ Mayo 1999

⁶ ZAHADRNIK 2004

⁷ LIEM 2005

⁸ Kusanagi/Kogure/Teramoto 2000

In schon bestehenden Arbeiten über PMS^{9 10} wird nicht näher auf die kraniosakrale Behandlung der Schädelbasis/Hormonachse eingegangen. Daher liegt mein Interesse in der Behandlung der Schädelbasis mit kranialen Techniken, von der ich mir erhoffe, Einfluss auf die Schädelbasis, dadurch auf die Hypophyse -und damit auf die Hormonregulierung- ausüben zu können. Durch diese Intervention erwarte ich mir eine Reduktion der Schmerzmittel und anderen Symptomen und eine Erhöhung der Lebensqualität der Frauen vor und während der Menstruation.

Um die Ursachen des Prämenstruellen Syndroms zu verstehen, werde ich zuerst den Menstruationszyklus erklären.

Danach folgen letzte Erkenntnisse über Symptome und Ätiologie des prämenstruellen Syndroms.

Da die Schädelbasis eine große Rolle in Bezug auf Hormonsteuerung besitzt, gehe ich auch auf anatomische Grundlagen der Schädelbasis ein.

Weiteres folgen anatomische und physiologische Grundlagen der beteiligten Strukturen Hypothalamus und Hypophyse, die für die Ausschüttung der für den weiblichen Zyklus und das Entstehen des PMS wichtiger Hormone verantwortlich sind.

Die Funktion der Schädelbasis hat in der Osteopathie große Bedeutung. Im Zusammenhang mit dem Primären Respiratorischen Mechanismus (PRM), der von der Schädelbasis aus über das Fasziensystem auf den gesamten Organismus übertragen werden soll, folgen Details über das kraniale Konzept der Osteopathie.

Den Abschluss bilden Ergebnisse und Diskussion der Studie.

Als Hypothese gehe ich davon aus, dass sich durch meine Behandlung der Schädelbasis mit kranialen Techniken Menstruationsbeschwerden reduzieren lassen.

Um die Ursachen von prämenstruelle Beschwerden zu verstehen ist es wichtig, zunächst den normalen Menstruationszyklus zu erklären, der eine Reihe von Hormonfluktuationen über eine Periode von 28 Tagen enthält.

-

⁹ RIEPLER-REISECKER 2006

¹⁰ HEIM 2007

2 Menstruationszyklus

Menstruationsblutungen treten zwischen der Pubertät und der Menopause auf. Die Zykluslänge variiert zwischen 25 bis 35 Tage, die Blutungsdauer beträgt ungefähr 3 bis 6 Tage mit einem Maximalflow am zweiten Tag. Die erste, proliferative Phase oder *Follikelphase* dauert durchschnittlich 14,6 Tage, die zweite *Lutealphase* (Gelbkörperphase) durchschnittlich 13,6 Tage¹¹.

Die Hormone der Hypothalamus-Hypophysen-Achse sind entscheidend für das Funktionieren des Menstruationszyklus, wobei der Hypothalamus eine zentrale Kontrollfunktion darüber hat. Das Gonadolibertin-Releasing Hormon GnRH, Follikelstimulierende Hormon FSH, Luteinisierende Hormon LH und die ovariellen Hormone Östrogen und Progesteron sind dafür bedeutsam.

Abbildung 1 illustriert die Interaktion der Drüsen mit den Organen, die Regulation der Hormonsynthese und -sekretion.

Während der Follikelphase (5.-14. Tag), die nach der Blutung beginnt, reift in den Ovarien eine Eizelle in einem Bläschen oder Follikel heran. Der Follikel wird unter dem Einfluss des FSH, das durch das Hormon GnRH produziert wird, größer. Der Follikel selbst produziert das Hormon Östrogen, das die sekundären weiblichen Geschlechtsmerkmale verursacht, wie die Entwicklung der Brust und die Verbreiterung des Beckens. Die Uteruswand beginnt anzuschwellen, damit sich ein eventuell befruchtetes Ei einnisten kann. Östrogen wirkt hemmend auf das FSH, damit kein zweiter Follikel reifen kann (Abb. 1.1).

Um den Follikel bildet sich eine Kapsel. Die Eizelle wird größer und vermehrt sich durch Meiose, eine asymmetrische Teilung, die zum Entstehen einer Eizelle mit 23 Chromosomen führt. Zwischen den Zellen treten Hohlräume auf, die sich mit Flüssigkeit aus den Blutgefäßen füllen. Es entsteht der Graaf-Follikel von ca. 5 mm.

_

¹¹ MIHM 2010

Nach ca. 14 Tagen beginnt die Ovulation unter Einfluss des LH. Der Follikel öffnet sich und die Eizelle wird in den Eileiter hinaufgezogen. Durch Bewegung der Flimmerhärchen im Eileiter wird das Ei zum Uterus befördert und braucht dazu 12-14 Tage (Abb. 1.2).

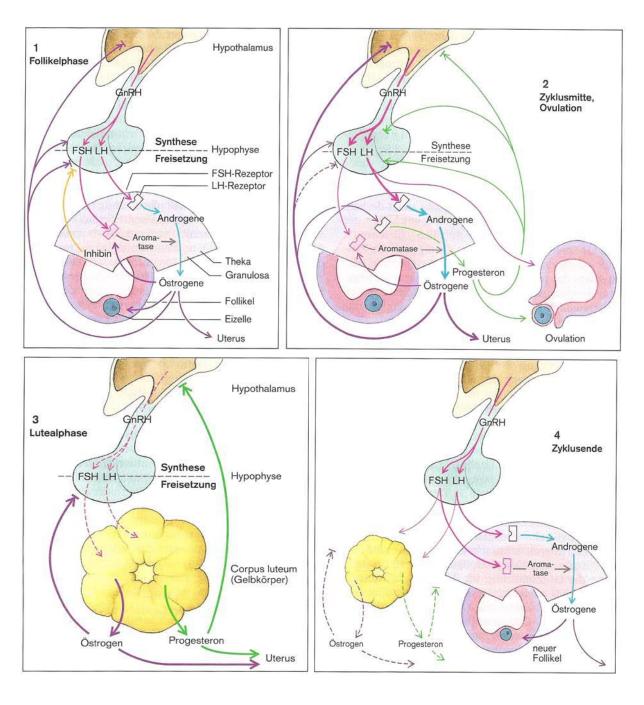


Abb. 1: Zusammenspiel der Hormone von Hypothalamus-Hypophyse-Ovarien

Ab dem 14. Tag beginnt die Lutealphase. Aus dem Rest des Follikels entsteht das Corpus luteum (Gelbkörper), der Östrogen und Progesteron produziert. Sollte sich keine Eizelle in die Gebärmutterschleimhaut einnisten, bewirken das Estradiol

(eines der wichtigsten natürlichen Östrogene) und Progesteron über negatives Feedback im Hypothalamus und Hypophyse eine Hemmung der Gonadoliberin GnRH-Ausschüttung, was zur Rückbildung des Corpus luteum führt (Abb.1.3). Der rasche Abfall des Östrogen- und Progesteronspiegels führt zur Konstriktion der Endometriumgefäße und zur Ischämie. Die Uterusschleimhaut wird abgestoßen und die Menstruationsblutung beginnt. Ein neuer Follikel beginnt zu reifen und ein neuer Zyklus beginnt (Abb.1.4)¹².

3 Prämenstruelles Syndrom

3.1 Definition

Das prämenstruelle Syndrom (PMS) ist im ICD-10 Code der WHO (*International Statistical Classification of Diseases and Related Health Problems*) unter N94.3 aufgelistet und bezeichnet somatische und affektive Beschwerden, die ausschließlich in der Lutealphase auftreten, bis zum Ende der Menstruation abklingen und in der Menopause nicht mehr vorhanden sind 14. Ungefähr 80% der Frauen leiden unter Symptomen, die dem PMS zugeschrieben werden 15. Manche Autoren sprechen sogar von bis zu 90% 16. Laut Definition müssen zumindest ein affektives und ein physisches Symptom während der Menstruation der letzten drei Zyklen auftreten und mit identifizierbaren Dysfunktionen oder Einschränkungen verbunden sein 17. Zu unterscheiden ist PMS von den *Prämenstruellen Dysphorischen Störungen* (PMDD), einer schweren Form des prämenstruellen Syndroms. Dabei müssen mindestens fünf Symptome auftreten. Bei dieser Form des PMS haben die Betroffenen massive Einschränkungen bei der Bewältigung des täglichen Lebens 18. Davon sind ungefähr 3-8% der Frauen betroffen 19.

¹² VAN DEN BERG 2005

¹³ SILBERNAGEL/DESPOPOULOS 1991

¹⁴ THANGARATINAM ET AL 2006

¹⁵ CLAYTON/KELLER/LESLIE/EVANS 2006

¹⁶ CAMPAGNE 2007

¹⁷ Dennerstein 2010

¹⁸ AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS 2010

¹⁹ TSCHUDIN 2009

3.2 Symptome

Inzwischen sind über 150 Symptome des PMS benannt. Es ist jedoch nicht bekannt, welche der zahlreichen mit PMS assoziierten Symptome diese Störung am besten darstellen.

Die Kriterien, die in jüngsten Studien über prämenstruelle Symptome verwendet wurden, sind die der *American Psychiatric Assosiation*. Sie sind in den *Diagnostic and Statistical Manual of Mental Disorders*²⁰ beschrieben und unterscheiden PMS von PMDD.

Bereits 1968 entwickelte R.H. Moos den *Menstrual Distress Questionnaire*²¹ zur Erfassung der prämenstruellen Symptome. Dieser umfasste schon damals 46 Symptome. Die Liste der Beschwerden wurde in den letzten Jahrzehnten ständig adaptiert und schließlich auf weniger als 20 Symptome zusammengefasst²².

FREEMAN erstellte den *17-Item Daily Symptom Report*, der relativ kurz ist und am besten zur Feststellung der häufigsten prämenstruellen Symptome geeignet ist und in klinischen Behandlungsstudien über PMS verwendet wird²³. DENNERSTEIN ergänzte die Liste der Symptome in einer jüngsten Studie auf 23 Symptome²⁴:

Affektive Symptome	Physische Symptome
Depression/Traurigkeit/Niedergeschlagenheit	Brustspannen
Zornausbrüche	Sich aufgedunsen/aufgebläht fühlen
Reizbarkeit	Kopfschmerzen
Ängstlichkeit	Anschwellen der Extremitäten
Desinteresse an üblichen Aktivitäten des täglichen Lebens oder sich zurückziehen	Gelenks- oder Muskelschmerzen oder Rückenschmerzen
Verwirrtheit	Schlafstörungen
Schnell die Beherrschung verlieren	Bauchkrämpfe
Unruhe	Gewichtszunahme

²⁰ FREEMAN 2011

²¹ Moos 1968

²² FREEMAN 1996

²³ FREEMAN 1996

²⁴ DENNERSTEIN 2010

Hoffnungslosigkeit	Hautunreinheiten
Angespanntheit	Veränderter Appetit
Stimmungsschwankungen	
Energielosigkeit/Müdigkeit	
Konzentrationsschwierigkeiten	

60% der an PMS leidenden Frauen haben während der Menstruation Schmerzen. Betroffene Frauen spüren heftige, intermittierende Spasmen, die häufig im unteren Bauchbereich lokalisiert sind und in den unteren Rücken ausstrahlen können²⁵. Bei 20% der Frauen wurde ein intensiver und länger anhaltendender migräneartiger Kopfschmerz festgestellt²⁶. Die Schmerzen haben neben massiven Einschränkungen im alltäglichen Leben enorme Auswirkungen auf die Krankenstände von berufstätigen Frauen und stellen daher auch ein wirtschaftliches Problem dar²⁷.

In den Fünfzigern wurden Frauen als hypochondrisch verurteilt, ihre Schmerzen als psychologisch angesehen, verursacht durch Unglücklich sein sich als Frau zu fühlen. Heutzutage werden periodische Schmerzen mit physischen Ursachen assoziiert²⁸.

3.3 Ätiologie

Die genauen Ursachen des prämenstruellen Syndroms sind bisher nicht geklärt. Das PMS tritt jedoch ausschließlich in der Lutealphase nach einer Ovulation auf. Voraussetzung für die Entwicklung des PMS sind hormonelle Schwankungen im Verlauf eines Zyklus, also veränderte zentralnervöse Regulationsvorgänge bzw. verstärkte neurobiologische Reaktivität auf normale Östrogen- und Progesteronserumspiegel²⁹.

Verantwortlich wird eine anormale Reaktion der Hypothalamus-Hypophysen-Ovarien-Achse auf Progesteron gemacht, dessen Hormonspiegel während der

²⁵ NASIR 2004

²⁶ RUSSEL 2010

²⁷ HALBREICH 2007

²⁸ WOOLVEN 2008

²⁹ CAMPAGNE 2007

Menstruation niedriger ist³⁰. Niedriges Progesteron wiederum führt zur Erhöhung des Östrogens. Progesteron und Östrogen beeinflussen die Übertragung des Serotonins im Zentralnervensystem, das als Modulator für Stimmung und Befindlichkeit bekannt ist³¹. Alle Serotoninproduzierenden Neurone im Gehirn sind sehr empfindlich auf das Vorhandensein oder Fehlen von Östrogen und Progesteron. Ein niedriger Östrogenspiegel bewirkt mehr Verfügbarkeit von Serotonin im Gehirn, hat also einen antidepressiven Effekt, ein hoher Progesteronspiegel bewirkt wenig Verfügbarkeit von Serotonin und hat den gegenteiligen Effekt³². Ein niedriger Serotoninspiegel steht in Verbindung zu Depression, Reizbarkeit, Aggression oder Verlust der Impulskontrolle³³.

Frauen mit PMS haben nicht nur niedrige Serotoninspiegel, sondern auch oft niedrige Endorphinwerte, die durch erhöhte Östrogenwerte verursacht werden. Endorphine sind ebenso wie Serotonin verantwortlich für Stimmung, aber auch für Schmerzerleichterung. Daher ist es nicht überraschend, dass Frauen mit erhöhten Östrogenwerten mehr Schmerzen, Ängste oder Stimmungsschwankungen haben³⁴.

Als weitere Ursache von PMS wird das Freisetzen von Prostaglandinen angedacht, das krampfartige Uteruskontraktionen und Schmerzen verursacht und ischämischer Natur ist³⁵. Auch ein erhöhter Vasopressinspiegel kann aufgrund seiner vasokonstriktorischen Funktion eine Rolle bei erhöhter Uteruskontraktion und ischämischem Schmerz spielen^{36 37}.

Melatonin, das für den Schlaf-Wach-Rhythmus verantwortlich ist, ist bei Frauen mit PMS funktionell verändert, was zu einer Störung der inneren Uhr führt und sich damit Schlafstörungen erklären lassen. Aber Schlafstörungen sind nachgewiesen mit Prolaktin-, Kortisol-, Serotoninveränderungen vergesellschaftet und erklären

30 CAMPAGNE 2007

³¹ ZAHRADNIK 2004

³² SPINELLI 2005

³³ PRITHAM 2002

³⁴ WOOLVEN 2008

³⁵ NASIR 2004

³⁶ FRENCH 2005

³⁷ BRÜHWILER 2006

nicht vollständig alle Beschwerden des PMS. Es fehlen funktionelle Zusammenhänge mit Östrogen und Progesteron³⁸.

Erhöhter Aldosteronspiegel führt zu gesteigerter Wasserretention und damit zu Symptomen wie Brustspannen, Anschwellen der Extremitäten oder sich aufgedunsen fühlen. Auch ein erhöhter Prolaktinspiegel wird mit Brustspannen in Verbindung gebracht³⁹.

Welche Strukturen für die Produktion der Hormone zuständig sind, erkläre ich in einem späteren Kapitel. Zunächst möchte ich auf die anatomischen Grundlagen der Schädelbasis eingehen, da die Schädelbasis eine zentrale Rolle für das Funktionieren der Hypophyse spielt und auch aus osteopathischer Sicht eine wichtige Funktion hat.

4 Schädelbasis (Synchondrosis Sphenobasilaris/SSB)

Die Schädelbasis (Synchondrosis Sphenobasilaris/SSB) wird aus dem Os ethmoidale (Siebbein), Os spenoidale (Keilbein), Pars petrosa des Os temporale (Schläfenbein) und der Pars basilaris des Os occipitale (Hinterhauptbein) gebildet, wobei dem Os sphenoidale eine zentrale Rolle innerhalb der Schädelbasis eingeräumt wird. Es bildet den Mittelpunkt der Schädelbasis.

Es besteht aus dem Corpus, der eine Höhle, den Sinus sphenoidale umschließt und der Sella turcica (Türkensattel) für die Hypophyse.

-

³⁸ ZAHRADNIK 2004

³⁹ MILEWICZ 2006

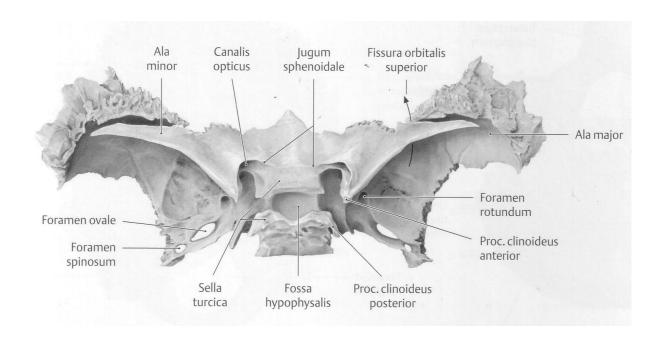


Abb 2: Sphenoid, Ansicht von cranial

Die Alae minores (kleine Keilbeinflügel) schließen die vordere Schädelgrube ab, die Alae majores (große Keilbeinflügel) bilden den Boden der mittleren Schädelgrube. Zwischen Alae majores und minores befindet sich die Fissura orbitalis superior (obere Augenhöhlenspalte), durch die der sensible Nerv N. ophthalmicus (V/I, 1. Ast des Nervus trigeminus V) und die Augenmuskelnerven N. opticus (II), N. oculomotorius (III) und N. abducens (VI) ziehen.

Nervus opticus und Arteria ophthalmica verlassen durch den Canalis opticus den Schädel. Nervus maxillaris (V/II, 2. Ast des Nervus trigeminus) zieht durch das Foramen rotundum und Nervus mandibularis (V/III, 3. Ast des Nervus trigeminus) zieht durch das Foramen ovale der Ala major.

Dahinter liegt das Foramen spinosum, durch das die Arterie meningea media läuft und die Dura mater (harte Hirnhaut) mit Blut versorgt. In Abbildung 3 sieht man deutlich die Auskleidung der Sella turcica mit Dura mater⁴⁰.

-

⁴⁰ FALLER 1984

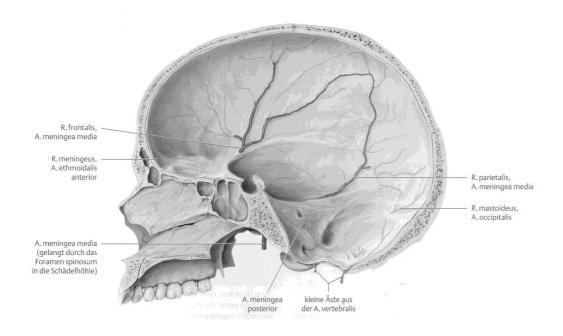


Abb 3: Sella turcica, Blutversorgung der Dura Mater

Aus osteopathischer Sicht ist die SSB von großer Bedeutung. Der posteriore Anteil des Os sphenoidale und der anteriore Teil der Pars basilaris des Os occipitale sind über die SSB gelenkig miteinander verbunden und besitzen dadurch eine minimale Beweglichkeit, die für das einwandfreie Funktionieren des Kraniums von zentraler Bedeutung sein soll⁴¹. Spannungen bzw. Dysfunktionen an der SSB sollen über das Diaphragma sellae und das Fasziensystem auf den ganzen Körper übertragen werden⁴². Genaueres wird im Kapitel 7.2 Faszien erklärt.

Die Schädelbasis ist verantwortlich für einen guten Sitz der Hypophyse, die Zentralstelle humoraler Regulation ist. Die Hypophyse wird wiederum von übergeordneten Zentren beeinflusst.

⁴² PAOLETTI 2001

⁴¹ LIEM 2003

5 Hypothalamus und Hypophyse

Der Hypothalamus ist mit seinen Verbindungen zu anderen ZNS-Arealen, den Hormonen und humoralen Steuerung der Hypophyse und Interaktion mit dem Immunsystem der Integrationsort hormonaler und nervaler Systeme ⁴³. Aufgrund der engen Verknüpfung des endokrinen Systems mit dem Nervensystem kommt der funktionellen Einheit Hypothalamus-Hypophyse große Bedeutung zu und bedarf daher genauerer Betrachtung.

Der Hypothalamus ist ein kleiner ventraler Teil des Diencephalons (Zwischenhirn), das unterhalb des zum Telencephalon (Endhirn) gehörenden Balken Corpus callosum und oberhalb des Mesencephalon (Mittelhirn) liegt. Der Hypothalamus befindet sich ventral und kaudal des Thalamus -der den größten Teil des Diencephalons ausmacht- zentral im Gehirn zu beiden Seiten des 3. Ventrikels. Kaudal ist er über das Infundibulum (Hypophysenstiel) mit der Hypophyse verbunden⁴⁴.

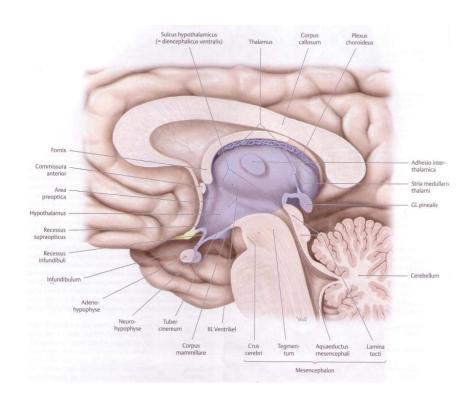


Abb 4: Diencephalon, rechte Hirnhälfte von medial

⁴³ KLINKE/PAPE/SILBERNAGL 2005

⁴⁴ Prometheus 2006

Die Hypophyse liegt eingebettet in die Sella turcica der Schädelbasis. Direkt darüber verläuft das Chiasma opticum. Lateral der Sella turcica liegt der Sinus cavernosus, der die Hypophyse, die Aorta carotis interna und den Nervus abducens (VI) umgibt und von Dura mater umschlossen wird. Das reich vaskularisierte Gewebe der Hypophyse wird arteriell über feine Kapillaren der Aorta carotis interna versorgt und venös über den Sinus cavernosus drainiert. Lateral des Sinus liegen die Nerven occulo-motorius (III), trochlearis (IV), ophthalmicus (V/1) und maxillaris (V/2).

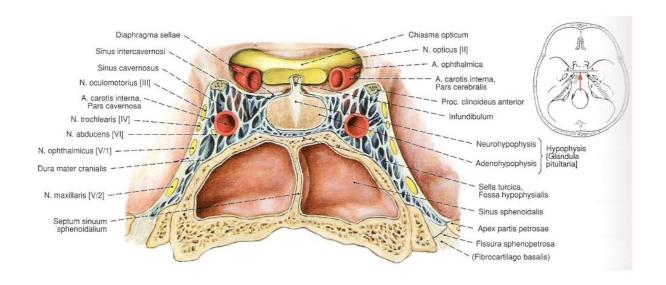


Abb 5: Hypophyse und Sinus cavernosum. Frontalschnitt von hinten

Es werden zwei funktionell unabhängige, bereits in der Embryogenese separat angelegte Anteile unterschieden: Der *Hypophysenvorderlappen* (oder Adenohypophyse), der aus ektodermal epithelialem Gewebe entstanden ist und dem *Hypophysenhinterlappen* (oder Neurohypophyse), einem Teil des Gehirns⁴⁵.

Im Hypophysenvorderlappen werden insgesamt sechs Hormone synthetisiert. Unterschieden werden nichtglandotrope Hormone, die direkt auf ihre Zielorgane einwirken, wie *Somatotropin (STH)* und *Prolaktin* und glandotrope Hormone, die direkten Einfluss auf endokrine Drüsen haben.

Bei den glandotropen Hormonen werden die auf die Keimdrüsen wirkenden gonadotropen Hormone Follikelstimulierendes Hormon FSH und Luteinisierendes

-

⁴⁵ KLINKE ET AL 2005

Hormon LH sowie die nichtgonadotropen Hormone, Adrenocorticotropes Hormon ACTH und Thyroideastimulierendes Hormon TSH unterschieden.

Somatotropin stimuliert das Längenwachstum und Prolaktin stimuliert die Proliferation des Brustdrüsengewebes und die Milchsekretion.

ATCH wirkt auf die Nebennierenrinde, beeinflusst den Wasser- und Elektrolythaushalt und die Kohlenhydratbildung in der Leber.

TSH stimuliert die Aktivität der Schilddrüse.

FSH stimuliert die Follikelreifung und Spermatogenese und die Ausschüttung von Estradiol (eines der wichtigsten Östrogene).

LH löst die Ovulation aus, stimuliert die Proliferation von Follikelepithelzellen und die Synthese von Progesteron⁴⁶.

Aus Kernen des Hypothalamus gelangen *Oxitocin* und Adiuretin (antidiuretisches Hormon ADH/*Vasopressin*) über Axone zum Hypophysenhinterlappen und werden von dort aufgrund der Nähe zum Gefäßsystem in den Körperkreislauf abgegeben ⁴⁷.

Oxitocin triggert den Anstieg von intrazellulärem Kalzium. Im Zielorgan Brust verursacht es Kontraktionen der Milchgänge, im Uterus Kontraktionen der glatten Muskulatur⁴⁸.

Vasopressin erhöht die Permeabilität der distalen Tubuli in den Nieren für Wasser und führt zu vermehrter Rückresorption des Wassers. Außerdem wirkt es vasokonstriktorisch auf das Gefäßsystem und steigert dadurch den Blutdruck⁴⁹.

5.1 Steuerung und Wirkung der Hormonsekretion

Hormone unterliegen einerseits einer ausgeprägten Autoregulation durch Feedbackmechanismen der Hypothalamus-Hypophysen-Ovarien-Achse und andererseits wird ihre Sekretion durch neurogene Einflüsse vor allem über den

⁴⁶ SCHÜNKE 2006

⁴⁷ BARTELS /BARTELS 1998

⁴⁸ AMAR 2003

⁴⁹ RENZ-POLSTER 2008

Hypothalamus gesteuert⁵⁰. Die neuroendokrinen Regelkreise bestehen aus den Ebenen Hypothalamus, Hypophyse und peripheren Drüsen.

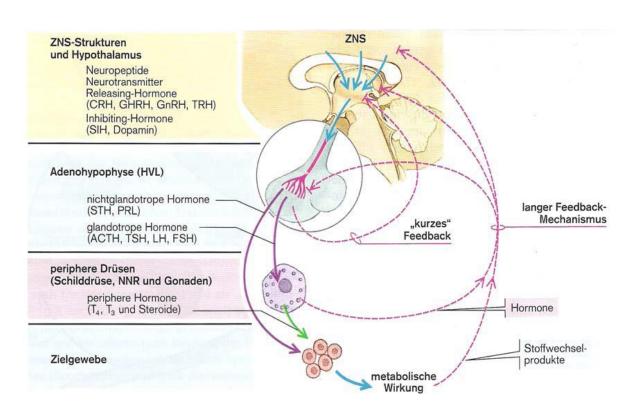


Abb 6: Regulation in neuroendokrinen Hormonsystemen

Das für die prämenstruellen Beschwerden entscheidende Hormon ist Östrogen. Gemeinsam mit Progesteron sind sie die wichtigsten Hormone, die in den Ovarien gebildet werden. Freisetzung und Hemmung wird vom Hypothalamus über GnRH gesteuert, das im Hypophysenvorderlappen die Produktion von FSH und LH überwacht⁵¹. Von Beginn des Zyklus bis zur Ovulation steigt die Konzentration von Östrogen unter dem Einfluss von FSH um das 10-fache seines Ausgangswertes an⁵². Wenn die Östrogenkonzentration einen bestimmten Schwellenwert übersteigt, kommt es durch positive Rückkoppelung zum Hypothalamus zu einem sprunghaften Anstieg der GnRH- und damit FSH- und LH-Konzentration⁵³. Der FSH-Spiegel ist am Übergang der Lutealphase zur Follikelphase am höchsten. LH bewirkt dann den Eisprung und induziert in der zweiten Hälfte des Zyklus die

⁵⁰ RENZ-POLSTER/KRAUTZIG 2008

⁵¹ BARTELS/BARTELS 1998

⁵² ŽUKOV 2010

⁵³ RENZ-POLSTER/KRAUTZIG 2008

Bildung von Progesteron, das um das 30-fache ansteigt, während die Östrogenkonzentration wieder absinkt⁵⁴. Die erhöhte Konzentration des Progesterons bremst die Abgabe der hypothalamischen und hypophysären Hormone ihrer Hormonachse über negatives Feedback⁵⁵. FSH und LH erreichen wieder ihren Ursprungswert. Durch diesen Rückkoppelungsmechanismus nehmen Östrogen und Progesteron wechselseitig in ihren Konzentrationen zu und ab⁵⁶.

Neben den Steroiden Östrogen und Progesteron wirken auch die Neurotransmitter Adrenalin, Noradrenalin, Dopamin und Serotonin (endogenes Opiatsystem) modulatorisch auf die Freisetzung des GnRH⁵⁷ und üben bestätigt nach letzten Erkenntnissen signifikanten Einfluss auf das Zentralnervensystem aus⁵⁸. Die endogenen Opioide selbst werden wiederum von den Steroiden reguliert, dh niedriges Östrogen bewirkt niedrige Opioidkonzentrationen, die als Folge die Stimulation der GnRH-Freisetzung hat.

5.2 Übertragungswege der Hormone

Zu ihren Zielorganen gelangen Hormone über Blut, Liquor und Lymphe.

Schon A.T. STILL betonte die Wichtigkeit der Flüssigkeiten ("*The rule of the artery*"). Blut, zerebrospinale Flüssigkeit (Liquor) und Lymphe versorgen Nerven, Ligamente, Muskeln, Haut und Knochen und die Arterien selbst⁵⁹.

Blut hat neben respiratorischer Funktion, Ernährungsfunktion, osmotische Regulation, Wärmeregulation und humorale Funktion. Es ist Transportmittel für Hormone, Vitamine, Antikörper und Enzyme⁶⁰. Vor allem der Hypophysenvorderlappen ist eines der am reichsten vaskularisierten Gewebe. Hormone werden somit auf dem schnellsten Weg vom Hypothalamus über die Hypophyse in den Körperkreislauf abgegeben⁶¹.

55 KLINKE/PAPE/SILBERNAGL 2005

⁵⁴ Žυκον 2010

⁵⁶ BARTELS/BARTELS 1998

⁵⁷ RUNNEBAUM/RABE 1994

⁵⁸ Žυκον 2010

⁵⁹ HERMANNS 2007, 28

⁶⁰ FALLER 1984

⁶¹ www. accessmedicine.com

Auch im *Liquor* werden Hormone nachgewiesen. Liquor ist für den Transport hypothalamischer und neurohypophysärer Substanzen verantwortlich. Er zirkuliert vom Plexus choroideus der vier Hirnkammern aus in den Subarachnoidalraum (äußeren Liquorraum) und in die Wirbelsäule. Rückresorbiert wird der größte Teil durch die venösen Sinus in der Dura mater⁶².

Vom Subarachnoidalraum aus gelangt der Liquor in die extrazelluläre Flüssigkeit, die in der *Lymphe* gesammelt wird, und fließt über den Ductus thoracicus in den linken Venenwinkel wieder zum Herzen. Arterielles Blut gelangt in den Schädel, wo über die Plexus choroidei erneut Liquor produziert wird und der Kreislauf erneut beginnt. Über 50% des Liquors sollen über das lymphatische System resorbiert werden⁶³.

6 Therapie des Prämenstruellen Syndroms

Die Therapie des PMS ist aufgrund der nicht genau erforschten Ursachen immer symptomatisch⁶⁴ und kann immer nur als Vorschlag verstanden werden.

Die aktuelle Literatur^{65 66 67} empfiehlt mehrere Schritte für eine effektive und interdisziplinäre Therapie des PMS.

 Die Änderung des Lebensstils ist die Empfehlung erster Wahl. Hierbei sollen diätische Maßnahmen befolgt werden, wie die Reduktion von Koffein, Salz, Alkohol Nikotin. Empfohlen werden auch regelmäßige sportliche Aktivität, Entspannung, Hypnose und Psychotherapie⁶⁸.

⁶² PROMETHEUS 2006

⁶³ LIEM 2005

⁶⁴ Zahradnik 2004

⁶⁵ CAMPAGNE 2007

⁶⁶ TSCHUDIN 2010

⁶⁷ Žикоv 2010

⁶⁸ DALEY 2009

2. Pharmakotherapie:

- Ovulationshemmer, die Drospirenon -ein Progesteron dritter Generationenthalten (Aliana[®], Yasmin[®], Yirala[®]) zeigen signifikante Verbesserung des PMS⁶⁹ und senken nachweislich die darin enthaltenen Prostaglandine⁷⁰.
- Prostaglandinhemmer, wie Nichtsteroidale Antirheumatika (NSAR), die entweder Mefenaminsäure (Parkemed[®]), Ibuprofen (Dismenol[®]), Diclofenac (Voltaren[®]), Acetylsalicylsäure (Aspirin[®]), Naproxen (Naprobene[®]) oder Butylscopolaminiumbromid (Mexalen[®]) enthalten und COX-2-Hemmer (Arcoxia[®], Celebrex[®]), die stark entzündungshemmend und bis zu 90%⁷¹ schmerzlindernd wirken⁷².
- Serotonin Re-uptake Inhibitors (Serotonin Wiederaufnahme-hemmer):

 Serotonin ist unseres Körpers eigenes Antidepressivum, daher werden gerne Antidepressiva mit Fluoxetin (Fluctine®), Fluvoxamin, Paroxetin (Seroxat®) oder Sertralin verordnet, die über die Wirkung am Protein 5-Hydroxytryptamintransporter (5-HTT) den Transport des Serotonins in die Zellen ermöglicht. Damit steigt der Serotoninspiegel wieder an⁷³.
- GnRH-Agonisten unterdrücken temporär die Ovarfunktion und haben sich als sehr effektiv zur Kontrolle physischer und psychischer Symptome herausgestellt. Sie werden allerdings nur für extreme Formen des PMS verabreicht⁷⁴.
- Bromocriptin (Umprel®) und Vitamin E senken die Serumkonzentration von Prolaktin und sind effektiv in der Behandlung von Mastopathie⁷⁵.

3. Chirurgische Eingriffe:

Eine Ovarektomie ist nur in schweren Fällen angezeigt⁷⁶.

⁶⁹ TSCHUDIN 2010

⁷⁰ Brühwiler 2006

⁷¹ NASIR 2004

⁷² ŽUKOV 2010

⁷³ WOOLVEN 2008

⁷⁴ STEINER 2000

⁷⁵ YONKERS 2008

⁷⁶ ZAHRADNIK 2004

4. Alternative Therapien:

- Vitamin B 6: Erhöhte Östrogenwerte beeinflussen die Vitamin B6-Funktion negativ. Vitamin B6 ist ein wichtiges Co-Enzym für die Synthese von Serotonin. Die Supplementierung in 22% der Fälle⁷⁷ hat sich in Studien als sehr positiv gezeigt, vor allem bei Frauen, die an Depressionen leiden.
- Kalzium reduziert die Symptome bezüglich Kopfschmerz, abdominalen Krämpfen und Wasserretention um 48%.
- Magnesium, das ohne Vitamin B6 erst gar nicht in die Zelle aufgenommen werden kann⁷⁸, zeigt Verbesserungen in Bezug auf Wasserretention und Stimmung⁷⁹.
- Wärme hat sich als genau so wirksam herausgestellt wie der Wirkstoff Ibuprufen⁸⁰.
- Transkutane Elektronervale Stimulation (TENS) führt zu einer Besserung der Schmerzen bis zu 60%⁸¹ 82.
- Omega-3 Fettsäuren führte zu signifikanten Ergebnissen bezüglich Entzündungshemmung und Schmerzreduktion^{83 84}.
- Akupunktur zeigte ebenfalls signifikante Verbesserungen bezüglich Schmerzen⁸⁵.
- Osteopathische Behandlungen:

High-Velocity-Low-Amplitude (HVLA)-Manipulation an der Wirbelsäule konnten teilweise Verbesserungen bezüglich Schmerzen zeigen⁸⁶.

Auch Studien von Heim⁸⁷ UND RIEPLER-REISECKER⁸⁸ im Rahmen ihrer Masterthesen konnten die Wirksamkeit osteopathischer Behandlungen belegen.

⁷⁸ Murray 1997

⁷⁷ MILEWICZ 2006

⁷⁹ CAMPAGNE 2007

⁸⁰ NASIR 2004

⁸¹ Proctor 2002

⁸² NASIR 2004

⁸³ HAREL 1996

⁸⁴ VAN DEN BERG 2003

⁸⁵ Proctor 2002

⁸⁶ PROCTOR 2007

⁸⁷ HEIM 2007

⁸⁸ RIEPLER-REISECKER 2006

7 Das kraniale Konzept in der Osteopathie

Aus osteopathischer Sicht ist die Funktion der Schädelbasis von großer Bedeutung. Der posteriore Anteil des Os sphenoidale und der anteriore Teil der Pars basilaris des Os occipitale sind über die SSB gelenkig miteinander verbunden und besitzen dadurch eine minimale Beweglichkeit, die für das einwandfreie Funktionieren des Kraniums von zentraler Bedeutung sein soll⁸⁹.

Da die Palpation der Beweglichkeit und des Rhythmus der Schädelbasis Teil meiner Studie ist, gehe ich näher darauf ein.

7.1 Primär Respiratorischer Mechanismus (PRM)

Der *Primär Respiratorische Mechanismus (PRM)* oder *Unwillkürliche Atemrhythmus* ist ein grundlegendes Modell in der kranialen Osteopathie und wurde von W.G. SUTHERLAND und C. WEAVER Ende der 1930er Jahre durch intensive Studien begründet. Er bildet die Grundlage für einen inhärenten palpablen Rhythmus, der am Schädel und am gesamten Körper spürbar und langsamer als Herz und Atmung sein soll⁹⁰.

Nach Magoun und Sutherland setzt sich der PRM aus folgenden Faktoren zusammen^{91 92}:

- Motilität (inhärente Bewegung) der Gehirns und Rückenmarks
- Fluktuation der Hirn- und Rückenmarksflüssigkeit
- Mobilität (Beweglichkeit) der intrakranialen und intraspinalen Membranen
- Mobilität der Schädelknochen
- Unwillkürliche Mobilität des Sakrums zwischen den Beckenknochen

Dieser Rhythmus soll unterschiedlich schnelle Frequenzen von 10-14 Zyklen pro Minute bis zu 2-3 Zyklen pro Minute haben und wird nach Symmetrie, Frequenz, Amplitude, Leichtigkeit und Kraft der Bewegung beurteilt⁹³.

⁹⁰ LIEM 2005

⁸⁹ LIEM 2003

⁹¹ Magoun 1976

⁹² SUTHERLAND 1990

Den PRM wissenschaftlich nachzuweisen ist äußerst schwierig. Noch immer wird kraniosakrale Therapie von kontroversen Diskussionen begleitet. Studien über die Wirksamkeit oder Wirkweise in internationalen medizinischen Fachblättern konnten aufgrund methodischer Mängel die Existenz des PRM und Effektivität einer kranialen Behandlung bisher nicht eindeutig bestätigen.

1977 prüfte UPLEDGER die Reliabilität der Untersuchungstechnik zur Feststellung des kraniosakralen Rhythmus bei 25 Kindern und erzielte eine 71 prozentige Übereinstimmung⁹⁴. Die Ergebnisse dieser Reliabilitätsstudie konnten bis heute nicht reproduziert werden. Sämtliche Untersuchungen zu diesem Thema in den letzten Jahren lieferten ernüchternde Ergebnisse. Bei keiner der zahlreichen Studien gab es signifikante Übereinstimmungen bezüglich eines festgestellten Rhythmus oder Bewegungen der Schädelknochen.

In Rogers Studie palpierten zwei erfahrene Therapeutinnen ein und denselben Patienten. Die Conclusio war, dass "the examiners were measuring different phenomena or they were attempting to measuring something that does not exist" ⁹⁵.

HARTMAN und NORTON beschreiben es prägnanter und behaupten, dass der PRM das Produkt der Wahrnehmung psychologischer Phänomene im Untersucher und Patienten ist und es kraniosakrale Therapie nur dadurch ohne wissenschaftliche Hilfe ins 21. Jahrhundert geschafft hat ⁹⁶. HARTMAN schlägt sogar vor, kraniosakrale Therapie erst gar nicht zu lehren: "Until outcome studies show that these techniques produce a direct and positive clinical effect, they should be dropped from all academic curricula. Insurance companies should stop paying for them and patients should invest their time, money, and health in treatments grounded in the extraordinarily successful, science-based biomedical model of the modern era".

VON HEYMANN und KOHRS⁹⁸ fanden in ihren Studien kein autonomes System, das für den angeblichen Rhythmus verantwortlich sein soll und bisher deutet keine wissenschaftlich anerkannte Untersuchung auf die tatsächliche Existenz eines

⁹³ LIEM 2005

⁹⁴ UPLEDGER 1977

⁹⁵ ROGERS 1998, 1185

⁹⁶ HARTMAN/NORTON 2002

⁹⁷ HARTMAN 2006, 10

⁹⁸ Von Heymann/Kohrs 2003

eigenständigen kraniosakralen Rhythmus hin. Auch zweifeln sie an der Palpationsfähigkeit des Menschen, tatsächlich Bewegungen der Schädelknochen zu spüren, da die Wahrnehmungsschwelle aufgrund der menschlichen Physiologie weit oberhalb der messbaren Werte liegen.

SOMMERFELD⁹⁹ stellte fest, dass "der PRM bei verschiedenen Untersuchern … nicht konsistent palpiert werden kann und die Atemfrequenzen unter bestimmten Bedingungen einen deutlichen Einfluss darauf haben, was der Untersucher als PRM wahrnimmt" und somit nicht klar ist, was der Therapeut tatsächlich spürt.

Auch eine der letzten Intertester-Reliabilitätsstudie im Rahmen der Masterthesis von MITTERLEHNER 2011 konnte keine signifikanten Ergebnisse liefern. Zwei Therapeuten palpierten nacheinander SSB-Dysfunktionen bei 30 ProbandInnen und kamen zu einer Übereinstimmung von nur 34 Prozent¹⁰⁰.

Einzig NELSON¹⁰¹ konnte in einer Studie zeigen, dass OsteopathInnen den kranialen Rhythmus scheinbar zeitgleich wahrgenommen hatten wie die mit Laser-Doppler aufgezeichneten Low-Frequency Fluktuationen bestimmter, dem PRM ähnlichen Parametern Puls, Blutdruck, Atmung oder zerebrospinaler Flüssigkeitsbewegung. Die Erkenntnis dieses gemessenen Phänomens bietet eine potenzielle Erklärung für das theoretische Konzept des physiologischen Mechanismus des kranialen Rhythmus. Auch einige Forschungsergebnisse dokumentieren zumindest kurzfristig feststellbare Effekte und Verbesserungen nach Ausübung kranial osteopathischer Techniken¹⁰².

Insgesamt unterstützen aber alle angeführten Studien nicht die Behauptung, dass der PRM ein physiologisches Phänomen ist, das zuverlässig palpiert werden kann.

Aber auch wenn der PRM mit aktuellen Möglichkeiten der Forschung klinisch nicht nachweisbar zu sein scheint, heißt es nicht, dass er nicht vorhanden ist. Daher folgen OsteopathInnen weiterhin dem Konzept, dass feinste Spannungen und Bewegungen spürbar sind.

ELSON 2001

⁹⁹ SOMMERFELD 2004, 10

¹⁰⁰ MITTERLEHNER 2011

¹⁰¹ NELSON 2001

 $^{^{102}}$ LIEM 2005

In der kranialen Osteopathie gilt weiterhin, dass ein gut funktionierender PRM Voraussetzung für eine optimale Funktion der Hypophyse ist und dadurch das Hormonsystem seine Aufgabe entlang seiner Hypothalamus-Hypophysen-Ovarien-Achse gut erfüllen kann.

7.2 Faszien

Für STILL hatte der Zustand faszialer Strukturen eine grundlegende Bedeutung für die Erhaltung der Gesundheit: "Durch ihre Aktion leben wir, durch ihr Versagen sterben wir" 103. Faszien sind sehr widerstandsfähige bindegewebige Membranen 104, die eine kontinuierliche Einheit zwischen dem Schädel und dem übrigen Körper darstellen. Sie sind ein wichtiger Faktor bei der Übermittlung des kraniosakralen Rhythmus auf den Körper und das einwandfreie Funktionieren des kranialen Systems 105. Faszien stehen in direkter anatomischer und funktioneller Verbindung zueinander 106. In der Gewebsflüssigkeit der Faszien/des Bindegewebes kommen Blutplasma, Lymphe und zerebrospinaler Liquor in Kontakt miteinander 107.

Die Dura mater, die äußerste Membran der Meningen (Hirnhäute), kleidet die Innenfläche des knöchernen Schädels aus. Sie setzt sich entlang der Wirbelsäule fort bis zum Sakrum. Die äußere periostale Schicht der Dura ist an der Schädelbasis besonders stark an der Crista galli, den Alae minores ossis sphenoidalis, Pars petrosa ossis temporalis, Foramen magnum und an den Processi clinoideii anteriores und posteriores des Corpus sphenoidale, die die Sella turcica umgeben, angeheftet 108 (siehe Abb.8).

_

¹⁰³ LIEM 2005, 445

¹⁰⁴ PAOLETTI 2001

¹⁰⁵ LIEM 2005

 $^{^{106}}$ Van den Berg 2005

¹⁰⁷ LIEM 2005

¹⁰⁸ PAOLETTI 2001

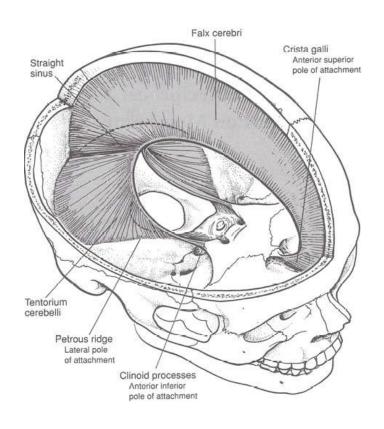


Abb. 8: Anheftungen der Reziproken Spannungsmembran

Die innere meningeale Schicht der Dura unterteilt sich in fünf Septen, dem Tentorium cerebelli, der Falx cerebri, Falx cerebelli, dem Tentorium bulbi olfactorii und dem Diaphragma sellae. Dieses bildet ein horizontales Septum über der Sella turcica und das Dach der Hypophyse und trennt den anterioren Teil der Sella turcia vom darüber liegenden Chiasma opticum. Es vereinigt sich mit der Wand des Sinus cavernosum und hat eine Durchtrittsöffnung für den Hypophysenstiel ¹⁰⁹.

Während des unwillkürlichen respiratorischen Atemrhythmus/PRM führen Os sphenoidale, Os occipitale und Os ethmoidale, die sich entlang der Mittellinie befinden, eine unwillkürliche Flexions- und Extensionsbewegung aus. Die paarigen Knochen Os temporale, Os parietale (Scheitelbein) und beide Hälften des Os frontale (Stirnbein) machen eine Innen- und Außenbewegung¹¹⁰ (siehe Abb.9).

¹⁰⁹ PAOLETTI 2001

¹¹⁰ LIEM 2005

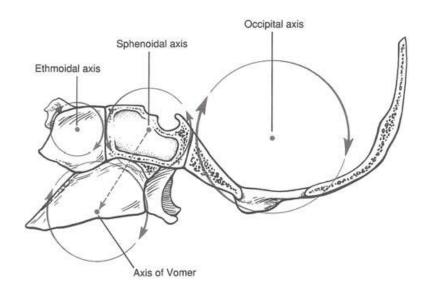


Abb. 9: Flexion und Extension der SSB

Während der Flexionsphase der SSB vergrößert sich die Öffnung im Diaphragma sellae für den Hypophysenstiel und verkleinert sich in der Expirationsphase wieder. Jedoch kleinste Veränderungen der feinen Beweglichkeit des Sphenoids, Spannungen des Diaphragma sellae und auch Spannungen der Wände des Sinus cavernosum könnten zu Funktionsstörungen der Hypophyse führen¹¹¹.

Die feinen rhythmischen Bewegungen der Schädelbasis sollen durch die festen Anheftungen der Dura am Schädeldach, an der Schädelbasis und entlang der Wirbel bis zum Sakrum weitergeleitet und über die faszialen Strukturen auch über weite Entfernungen auf den ganzen Körper übertragen werden¹¹² ¹¹³ (siehe Abb.10).

¹¹¹ LIEM 2003

¹¹² PAOLETTI 2001

¹¹³ UPLEDGER 1994

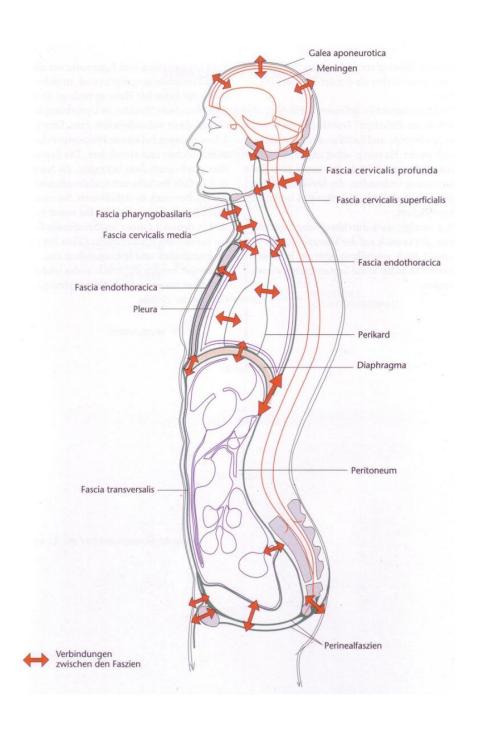


Abb. 10: Verbindungen der Faszien untereinander

Untersuchungen bestätigten zum Teil diese Behauptung. Es bestehen Hinweise auf Spannungsübertragung von der Dura mater spinalis auf die Dura mater cranialis und es können Spannungen von Muskeln auf das durale System übertragen werden¹¹⁴. Bei starker Flexion der Wirbelsäule kam es in Studien zu Verschiebungen der Dura mater¹¹⁵. Unklar ist jedoch, in welchem Ausmaß diese

¹¹⁴ UPLEDGER 1994

¹¹⁵ KLEIN 1986

feinsten rhythmische Impulse, wie im kranialen Konzept der Osteopathie angenommen, und kleinste Spannungen über das durale System übertragen werden können.

Einen möglichen Zusammenhang zwischen Dura mater, Sella turcica und Hypophysenfunktion konnte eine Studie aus Japan herstellen. Nach einer Fraktur der Sella turcica ohne Verletzung der Hypophyse oder vaskulärer Schäden -jedoch Penetration des Diaphragma sellae- kam es zu einer Insuffizienz der Hypophyse¹¹⁶. Der Umstand, dass die Hypophyse bei Hypophysenfunktionssstörungen nicht beteiligt ist, ist jedoch äußerst selten und die einzige Studie, die ich in der wissenschaftlichen Literatur finden konnte.

Nicht nur intrakraniale Spannungen der Dura, sondern auch hypertone Spannungen der Nackenmuskeln, Stürze auf das Steißbein, viszerale und muskuloskelettale Dysfunktionen über myofasziale Verbindungen zur SSB könnten die Funktion der Schädelbasis stören¹¹⁷.

Dysfunktionen der SSB äußern sich in sieben *Strains*: Flexion, Extension, Torsion, Lateralflexion-Rotation, superiorem und inferiorem "Vertical Strain", "Lateral Strain" und Kompression, wobei laut LIEM¹¹⁸ vorwiegend Flexion, Torsion, Vertical und Lateral Strain endokrine Störungen verursachen können.

Auf die Dysfunktionen der Schädelbasis werde jedoch nicht näher eingehen, da dies nicht Gegenstand meiner Studie ist.

_

¹¹⁶ KUSANAGI/KOGURE/TERAMOTO 2000

¹¹⁷ LIEM 2005

¹¹⁸ LIEM 2003

8 Methodologie

8.1 Auswahlkriterien

Für meine Studie wurden 20 gesunde Frauen zwischen dem 18. und 45. Lebensjahr mit regelmäßigem Menstruationszyklus ausgewählt, die angaben, an prämenstruellen Beschwerden und/oder an Schmerzen während der Menstruation zu leiden. Sie wurden vorher gynäkologisch untersucht, um folgende Kriterien auszuschließen, die das Ergebnis beeinflussen könnten:

- Organische Erkrankungen des Uterus
- Endometriose
- Schwangerschaft
- Hormonelle Verhütung
- Hormonsubstitution
- Hypophysenadenom

Da die Frauen sukzessive in die Studie aufgenommen wurden, erfolgte die Randomisierung nach dem Zufallsprinzip. Je nach Eintreffen wurden 10 Frauen in die Interventionsgruppe und 10 Frauen in die Kontrollgruppe eingeteilt und einmalig behandelt.

Frauen, die während der Menstruation Medikamente gegen die Schmerzen nahmen, habe ich gebeten, diese während der Studiendauer nur dann einzunehmen, wenn es unbedingt notwendig sein sollte, damit Veränderungen durch die Behandlung festzustellen sind.

8.2 Fragebogen

Als Fragebogen diente mir die 23-Item Checklist von Dennerstein ¹¹⁹, die am besten zur Feststellung der häufigsten prämenstruellen Symptome geeignet ist und in klinischen Behandlungsstudien über PMS verwendet wird.

Ein zweiter Fragebogen enthält eine Visuelle Analogskala für die Angabe des Schmerzempfindens.

-

¹¹⁹ DENNERSTEIN 2010

8.3 Ablauf

Die Behandlung erfolgte in der Zeit, in der keine Beschwerden auftreten, dh zwischen dem 7. und 14. Tag des Zyklus. BARRAL¹²⁰ erachtet viszerale Behandlungen bei prämenstruellen Beschwerden in der ersten Woche nach der Menstruation am sinnvollsten. Zu kranialen Behandlungen gibt es keine Empfehlungen.

Die Behandlungstermine vereinbarte ich mit den Frauen je nach ihren Zyklen.

Wenn ich von "Behandlung" der Schädelbasis spreche, so meine ich damit eine Intervention, von der man im kranialen Konzept der Osteopathie annimmt, mit kranialen Techniken Einfluss auf die Schädelbasis nehmen zu können.

Jede Frau erhielt einen Fragebogen, den sie kurz vor der Menstruation und eine Visuelle Analogskala, die sie innerhalb der ersten drei Tage der Menstruation ausfüllen sollten.

Vor der Behandlung beurteilte ich den kraniellen Rhythmus der an der Schädelbasis beteiligten Knochen, der sich bei allen Frauen als nicht rhythmisch und symmetrisch darstellte.

Nebenbei stellte ich bei vier Frauen ein Torsionsmuster, bei drei ein Flexionsmuster, bei je einer einen Lateral und Vertical Strain und bei einer Frau ein Kompressionsmuster der Schädelbasis fest. Diese Feststellung deckte sich im Großen und Ganzen mit den Angaben von LIEM, der vor allem Flexion, Torsion, Lateral und Vertical Strain als mögliche Ursachen endokriner Störungen ansieht ¹²¹. Da die SSB-Muster jedoch nicht Gegenstand meiner Studie sind, nehme ich diese nur zur Kenntnis.

Danach erfolgte eine Behandlung mit kranialen Techniken an der Region Schädelbasis.

_

¹²⁰ BARRAL 2004

¹²¹ LIEM 2003

Die Patientinnen lagen auf dem Rücken. Die Sitzposition war am Kopfende der Patientin, die Ellbogen auf dem Behandlungstisch aufgestützt. Als Handhaltung wählte ich die Occipito-sphenoidale Palpation nach J.E. UPLEDGER¹²², die mir sehr vertraut ist.

Abb. 11: Occipito-sphenoidale Palpation nach J.E. UPLEDGER

Die Daumen liegen beidseitig an den Alae majores und die kleinen Finger und Ringfinger beidseitig am Os occipitale.

Die Dauer der Behandlungen betrug zwischen zehn und fünfzehn Minuten; solange, bis sich ein rhythmisch, symmetrisch kräftiger PRM aller an der Schädelbasis beteiligten Knochen einstellte.

Die Frauen in der Kontrollgruppe erhielten eine Scheinbehandlung von einer Kollegin, die keine Kenntnisse über kraniale Techniken hat. Die Handhaltung war jeweils die gleiche und auch die Behandlungszeiten entsprachen denen der Interventionsgruppe.

Vor und nach der darauf folgenden Menstruation wurden der Fragebogen und die Visuelle Analogskala wieder ausgefüllt und danach ausgewertet.

-

¹²² LIEM 2005

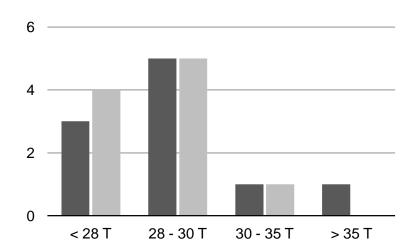
9 Ergebnisse

Die Verteilung der metrischen Daten (Schmerzfragebogen von Tag 1 - Tag 3) wurde überprüft (s. Anhang 14.4.2.) und entsprechend parametrische (ungepaarter bzw. gepaarter *t-Test*) oder parameterfreie Tests (*Mann Whitney U Test* bzw. *Wilcoxon Test*) angewendet, um Unterschiede zwischen behandelten und nichtbehandelten Patientinnen bzw. zwischen vor und nach Behandlung zu untersuchen. Häufigkeiten wurden mittels *Chi-Quadrat Test* zwischen den Gruppen statistisch geprüft.

Die statistischen Analysen wurden mit *Medcalc* 11.5 (www.medcalc.org) durchgeführt und ein p-Wert von < 0,05 wurde als statistisch signifikant erachtet. Alle Ergebnisse wurden unabhängig von der Verteilung als MW ± STD oder als Anzahl und Prozent dargestellt.

Insgesamt wurden 20 Patientinnen mit einem mittleren Alter von 36.0 ± 4.6 Jahren in die Studie eingeschlossen und einer Gruppe mit Behandlung mittels kranialer Techniken (INV, n=10) oder mit Scheinbehandlung (KON, n=10) durch einen Randomisierungsprozess zugeordnet.

Die beiden Gruppen unterschieden sich zum Messzeitpunkt 1 (s. Anhang 14.4.3.) nicht statistisch signifikant bezüglich Alter, Zykluslänge, Intensität und Dauer der Menstruation sowie der Frequenz von Schmerzen und Schmerzmedikation, weder vor noch nach Behandlung (s. Anhang 14.4.4.) sowie Abbildung 1a-1e. Ebenso konnte durch die Behandlung kein statistisch signifikanter Unterschied (s. Anhang 14.4.5. und 14.4.6.) in der Interventions- und Kontrollgruppe beobachtet werden (Abbildung 1a-1e).


Abbildung 1a-1e: Menstruationsanamnese untersuchter Frauen vor (pre) und nach (post) Behandlung.

INV Interventionsgruppe, KON Kontrollgruppe

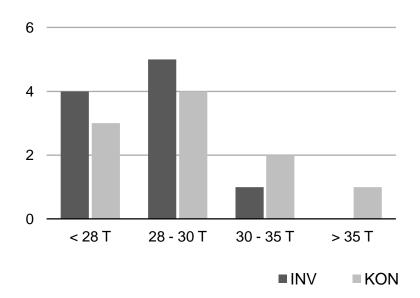
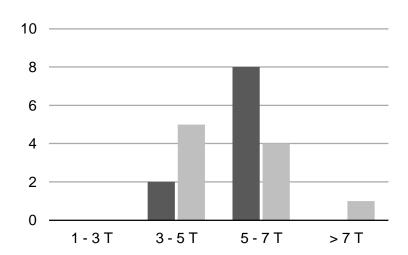

Angaben als Absolutwert, p = n.s. Chi-Quadrat Test

Abbildung 1a: Zykluslänge in Tagen

Zykluslänge pre



Zykluslänge post

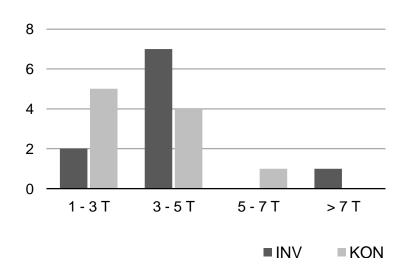
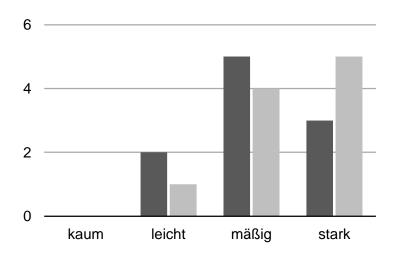


Abbildung 1b: Blutungsdauer in Tagen

Blutungsdauer pre



Blutungsdauer post

Abbildung 1c: Intensität der Blutung

Intensität der Blutung pre

Intensität der Blutung post

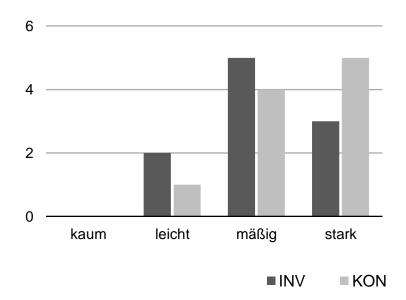
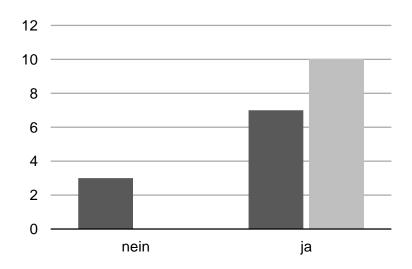



Abbildung 1d: Schmerzen / Beschwerden bei jedem Zyklus

Schmerzen bei jedem Zyklus pre

Schmerzen bei jedem Zyklus post

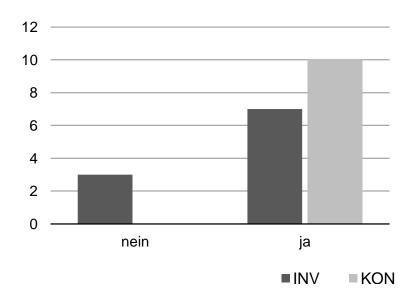
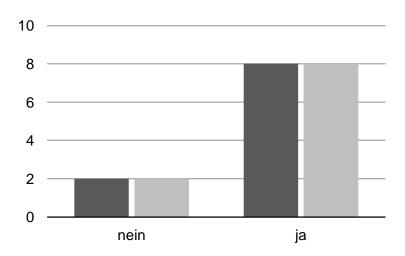
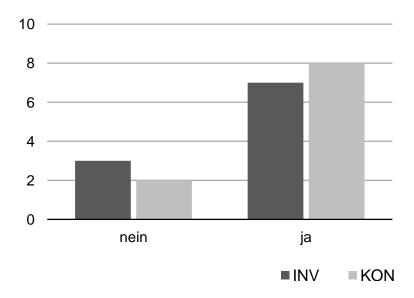




Abbildung 1e: Einnahme von Schmerzmittel / anderen Medikamenten

Schmerzmittel pre

Schmerzmittel post

Dreiviertel aller Frauen (n=15) nahmen ein oder mehrere Schmerzmittel zur Therapie von Menstruationsbeschwerden ein. Mefenaminsäure (Parkemed[®]) und Ibuprofen wurden am häufigsten eingesetzt (Tabelle 1). Die Dosierung der Medikamente wurde über die Studie von den Patientinnen nicht verändert. Allerdings hat eine Patientin der Interventionsgruppe, die mit 200mg Mexalen therapiert worden war, nach der Behandlung keine Schmerzmedikation mehr benötigt.

Tabelle 1: Medikamentöse Therapie von Menstruationsbeschwerden; Präparate und Tagesdosis. Angaben sind Absolutwerte

Medikament	pre (n=16)	post (n=15)
Buscopan 40 mg	1	1
Ibuprofen 400 / 500 mg	4	4
Magnesium 1220 mg	1	1
Parkemed® 500 - 1500 mg	7	7
Naproxen 660 mg	1	1
Mexalen® 200 / 1000 mg	2	1

Die Dauer der medikamentösen Therapie von Menstruationsbeschwerden wurde durch die osteopathische Behandlung in beiden Gruppen nicht verändert. Allerdings unterschieden sich Interventions- und Kontrollgruppe sowohl vor als auch nach Behandlung statistisch signifikant (Tabelle 2 sowie Anhang 14.4.7.)

Tabelle 2: Dauer der medikamentösen Therapie von Menstruationsbeschwerden vor (pre) und nach (post) in der Interventions- (INV) und Kontrollgruppe (KON).

n=15, Angaben sind Absolutwerte

Therapiedauer pre	INV *	KON
1 Tag	5	0
2 Tage	3	6
3 Tage	0	2

Therapiedauer post	herapiedauer post INV *				
1 Tag	5	0			
2 Tage	2	6			
3 Tage	0	2			

^{*} p = 0,006 (pre) und p = 0,004 (post) INV vs. KON, Chi-Quadrat Test

Bei den mittels Fragebogen erhobenen affektiven und physischen Symptomen konnten zwischen der Interventions- und Kontrollgruppe sowie durch die Behandlung keine signifikanten (p>0,05) Veränderungen der Einzelsymptome beobachtet werden. Die Häufigkeiten der Einzelsymptome wurden daher nur für den Zeitpunkt vor Behandlung angeführt (Tabelle 3. sowie Anhang 14.4.8.)

Tabelle 3a-3b: Affektive und physische Symptome vor Behandlung in der Interventions- (INV) und Kontrollgruppe (KON).

Tabelle 3a: Affektive Symptome
Angaben sind Absolutwerte, p = n.s. *Chi-Quadrat Test*

Affektive Symptome	INV	KON
Depression/Traurigkeit	4	3
Zornausbrüche	6	6
Reizbarkeit	10	6
Ängstlichkeit	2	1
Desinteresse	5	6
Verwirrtheit	2	2
Beherrschung verlieren	10	7
Unruhe	5	5
Hoffnungslosigkeit	0	0
Angespanntheit	8	6
Stimmungsschwankungen	9	8
Energielosigkeit/Müdigkeit	9	6
Konzentrationsschwierigkeiten	1	2

Tabelle 3b: Physische Symptome Angaben sind Absolutwerte, p = n.s. *Chi-Quadrat Test*

Physische Symptome	INV	KON
Brustspannen	8	7
Sich aufgedunsen/aufgebläht fühlen	9	9
Kopfschmerzen	2	3
Anschwellen Extremitäten	6	5
Gelenks-, Muskel-, Rückenschmerzen	6	7
Schlafstörungen	4	7
Bauchkrämpfe	8	9
Gewichtszunahme	7	6
Hautunreinheiten	4	6
Veränderter Appetit	10	8

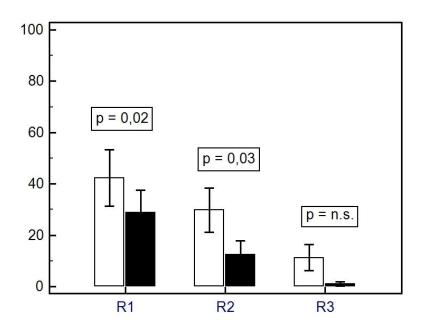
Allerdings wurde durch die Behandlung eine signifikante Reduktion des Summenscores affektiver und physischer Symptome in der Interventionsgruppe erreicht (Tabelle 4 sowie Anhang 14.4.9.).

Tabelle 4: Summe affektiver und physischer Symptome vor (pre) und nach (post) Behandlung in der Interventions- (INV) und Kontrollgruppe (KON).

Werte sind Mittelwerte ± Standardabweichung

* p < 0,05 paired t-Test pre vs. post, $^{\bullet}$ p = 0,004 unpaired t-Test KON vs INV (post)

Punkte	INV	KON
pre		
Summe affektiver Symptome	19,8 ± 9,2	20,4 ± 19,8
Summe physischer Symptome	22,4 ± 6,1	24,5 ± 11,5
post		
Summe affektiver Symptome	13,4 ± 8,4 *	22,1 ± 19,3
Summe physischer Symptome	14,7 ± 9,5 *	26,1 ± 11,6 *


Rückenschmerzen und krampfartige Schmerzen im Uterus/Abdominalbereich wurden mit Beginn der Regelblutung über 3 Tage mittels visueller Analogskala abgefragt.

In der Interventionsgruppe (s. Anhang 14.4.10) konnten die Schmerzen am Rücken (Abb. 2a) und im Uterus/Abdominalbereich über die ersten beiden Tage (Abb. 2c) signifikant verbessert werden.

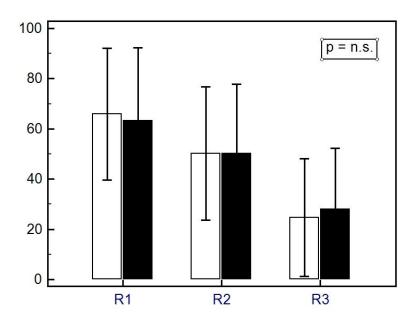
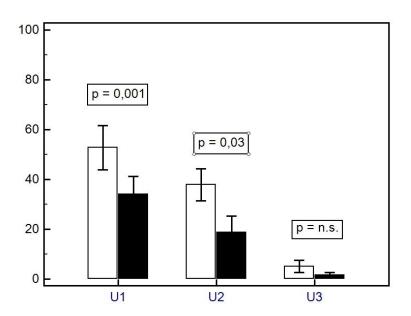

In der Kontrollgruppe (s. Anhang 14.4.11) unterschieden sich die Werte für Rücken-(Abb. 2b) und Uterus/Abdominalbereich (Abb. 2d) vor und nach Behandlung nicht signifikant.

Abbildung 2a-2d: Rücken (R) und Uterus/Abdominalbereich (U) untersuchter Frauen vor (weiß) und nach (schwarz) Behandlung.


Abbildung 2a: Rückenschmerzen über 3 Tage in der Interventionsgruppe. Werte sind als Mittelwerte ± 1 SEM dargestellt, *p paired t-Test* (pre vs. post).

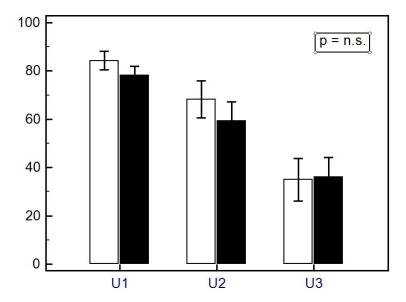

Abbildung 2b: Rückenschmerzen über 3 Tage in der Kontrollgruppe. Werte sind als Mittelwerte ± 1 SEM dargestellt, *p paired t-Test* (pre vs. post).

Abbildung 2c: Uterusschmerzen über 3 Tage in der Interventionsgruppe. Werte sind als Mittelwerte ± 1 SEM dargestellt, *p paired t-Test* (pre vs. post).

Abbildung 2d: Uterusschmerzen über 3 Tage in der Kontrollgruppe. Werte sind als Mittelwerte ± 1 SEM dargestellt, *p paired t-Test* (pre vs. post).

10 Diskussion

Als Hypothese angenommen, dass durch eine Intervention mit kranialen Techniken prämenstruelle Beschwerden reduziert werden, zeigten sich signifikante Veränderungen. Bezüglich der Schmerzreduktion während der ersten zwei Tage der Menstruation konnte ebenfalls eine signifikante Verbesserung erreicht werden.

In der hier präsentierten Studie wurden 20 Frauen ausgewählt, die an prämenstruellen Symptomen und/oder Schmerzen während der Menstruation leiden. Sie wurden in einem Randomisierungsprozess zwei Gruppen zugeteilt und nach Ausfüllen eines Fragebogens und einer visuellen Analogskala einer Behandlung mit kranialen Techniken oder einer Scheinbehandlung unterzogen. Nach einem weiteren Ausfüllen der Fragbögen wurden die Daten ausgewertet.

Dass bis zu 80% der Frauen an prämenstruellen Symptomen leiden, wurde bereits in vielen Studien nachgewiesen¹²³ ¹²⁴ ¹²⁵ ¹²⁶ ¹²⁷ und ist daher nicht Gegenstand meiner Untersuchung. In meiner Arbeit stellte ich die Einflussnahme mit kranialen Techniken auf prämenstruelle Beschwerden in den Vordergrund, da dies bis jetzt in keiner Studie untersucht wurde.

Ich verwendete die 23-Item Checklist nach DENNERSTEIN aus dem Jahr 2010, die am besten zur Feststellung der häufigsten prämenstruellen Symptome geeignet ist und in jüngsten klinischen Behandlungsstudien über PMS verwendet wurde.

Die Auswertung der Daten bezüglich Zykluslänge (p=0,40), Intensität (p=0,34) und Dauer der Menstruation (p=0,42) ergaben keinen signifikanten Unterschied vor und nach der Behandlung, sowie in der Interventionsgruppe und Kontrollgruppe. Damit befinden sich die Ergebnisse im in der Literatur beschriebenen Durchschnitt ¹²⁸ und zeigen einen regelmäßigen Menstruationszyklus, der keinen großen Hormonschwankungen unterworfen ist.

¹²³ FREEMAN 1996

¹²⁴ STEINER 2000

¹²⁵ CAMPAGNE 2006

¹²⁶ HALBREICH 2007

¹²⁷ DENNERSTEIN 2011

¹²⁸ MIHM 2010

So wie auch bei RIEPLER-REISECKERS Masterthesis 2007 gaben die betroffenen Frauen mäßige bis starke Blutungen an. Diese Ergebnisse waren in beiden Gruppen und vor und nach der Behandlung nicht signifikant verändert.

Dreiviertel der Frauen (n=15) gaben an, an Schmerzen während der Menstruation zu leiden und nahmen Medikamente (Mefenaminsäure und Ibuprufen am häufigsten) in unveränderter Dosierung vor (p=0,02) und nach der Behandlung (p=0,01), obwohl ich sie gebeten hatte, Schmerzmittel gegebenenfalls auszulassen, um Unterschiede durch die Behandlung feststellen zu können. Nur eine Patientin brauchte nach der Intervention keine Schmerzmittel mehr. Allerdings unterschieden sich Interventionsgruppe und Kontrollgruppe sowohl vor als auch nach Behandlung statistisch signifikant. Die Frauen der Kontrollgruppe nahmen von Beginn an mehr Schmerzmittel als jene der Interventionsgruppe, was durch eine unglückliche Randomisierung erklärbar sein könnte.

Bei den mittels Fragebogen erhobenen Beschwerden wurden bei den affektiven Symptome als häufigste Reizbarkeit, Beherrschung verlieren, Stimmungsschwankungen und Energielosigkeit/Müdigkeit angegeben. Als physische Symptome wurden am meisten Veränderter Appetit, Sich aufgedunsen/aufgebläht fühlen, Bauchkrämpfe und Brustspannen angegeben.

Nach einer jüngsten Studie von DENNERSTEIN wurden als die sechs signifikantesten Zeichen des PMS Appetitstörungen, Desinteresse an üblichen Aktivitäten, Stimmungsschwankungen, Bauchkrämpfe, Kopfschmerzen und Angespanntheit identifiziert, wobei die dominantesten unabhängigsten Symptome schwankungen und Angespanntheit sind 129. In einer anderen Studie werden bei den physischen Symptomen Rückenschmerzen und Krämpfe und bei den affektiven Symptomen Veränderter Appetit und Desinteresse an üblichen Aktivitäten als Symptome angeführt¹³⁰. vorherrschende Nicht signifikant PMS ist Traurigkeit/Depression und das wurde in meinem Fragebogen auch nicht oft angekreuzt. Diese Ergebnisse entsprechen im Großen und Ganzen meinen erhobenen Befunden. Nur Kopfschmerz und Brustspannen wurden in meiner Untersuchung im Gegensatz zu DENNERSTEINS Studie als häufig angegeben.

¹²⁹ Dennerstein 2009

¹³⁰ FREEMAN 2010

Zwischen der Interventionsgruppe und Kontrollgruppe sowie durch die Behandlung mit kranialen Techniken konnten keine signifikanten (p>0,05) Veränderungen der Einzelsymptome beobachtet werden. Fasst man die Einzelsymptome allerdings in Gruppen (affektive und physische Symptome) zusammen, so zeigte sich eine signifikante Reduktion der Beschwerden in der Interventionsgruppe (p<0,02), wobei es zu einer deutlicheren Verbesserung der physischen als der affektiven Symptome kam.

Mittels einer Visuellen Analogskala ab Beginn der Regelblutung über einen Zeitraum von drei Tagen fragte ich die Heftigkeit der Rückenschmerzen bzw. krampfartigen Schmerzen im Uterus bzw. Abdominalbereich ab. In der Interventionsgruppe verbesserten sich die Schmerzen am Rücken über die ersten beiden Tage (Tag 1 p=0,02, Tag 2 p=0,03) und im Uterus-/Abdominalbereich ebenfalls über die ersten beiden Tage (Tag 1 p=0,001, Tag 2 p=0,03) signifikant. In der Kontrollgruppe unterschieden sich die Werte für Rücken- und Uterus-/Abdominalschmerzen vor und nach Behandlung nicht signifikant.

Erfreulich war die Abnahme der Schmerzen im Rücken und im Uterus-/Abdominalbereich nach der Behandlung. Erstaunlich fand ich, dass trotz signifikanter Reduzierung der Schmerzen die Dosierung und Dauer der Schmerzmitteleinnahme nicht verändert wurde (im Gegensatz zur Studie von PINTER-HAAS¹³¹, bei der sich auch die Medikamentendosis reduzierte). Eine mögliche Erklärung könnte sein, dass es sich um Gewohnheit handelt, zu Schmerzmitteln zu greifen.

11 Schlussfolgerung

Die Bemühungen meiner Studie waren es, durch eine Intervention mittels kranialer Techniken an der Schädelbasis deutliche Verbesserungen der prämenstruellen Beschwerden durch Beeinflussung der Hypophyse entlang der HPO-Achse erzielen zu können. Die kraniosakrale Intervention bewirkte eine signifikante Reduktion affektiver und physischer Symptome. Bezüglich der Einzelsymptome zeigte sich

_

¹³¹ PINTER-HAAS 2007

keine deutliche Veränderung, bei den in Gruppen zusammengefassten Symptomen zeigte sich jedoch eine signifikante Verbesserung.

Die Ergebnisse dieser Untersuchung sind für Frauen mit Menstruations-Beschwerden repräsentativ. Zur Dauer des Therapieerfolges jedoch konnten keine Aussagen getroffen werden. Eine Nachfolgestudie mit verbesserter Methodolgie (größere Stichprobenanzahl, mehrmalige Behandlungen) wäre notwendig.

Die vorliegenden Ergebnisse lassen einen Effekt kranialer Techniken auf das Hormonsystem vermuten, wie die Reduktion prämenstrueller Beschwerden gezeigt hat. Ob tatsächlich das Hormonsystem beeinflusst wurde, bleibt offen.

Damit die Effizienz osteopathischer Behandlungen wissenschaftlich untermauert wird, ist der Einsatz von klinischen Studien erforderlich. Die Anwendung kraniosakraler Techniken in klinischen Studien ist wissenschaftlich allerdings schwer nachzuweisen. Viele Behandlungstechniken im Rahmen des kraniosakralen Modells der Osteopathie basieren auf der Annahme, dass wir die feinen Bewegungen der Schädelbasis palpieren und gewisse Veränderungen an Strukturen der Schädelbasis induzieren können.

Tatsache ist aber, dass wir nicht wissen, ob wir mit einer osteopathischen Technik wie der kraniosakralen Therapie irgendetwas an der Schädelbasis bewirken können und wir deshalb kritisch mit der Interpretation der Wirksamkeit umgehen müssen. Die Wirksamkeit bleibt spekulativ.

12 Abbildungsverzeichnis

- Abb. 1: Zusammenspiel der Hormone von Hypothalamus-Hypophyse-Ovarien. KLINKE R./SILBERNAGEL S.: Lehrbuch der Physiologie. Thieme Verlag. 1996, 489
- Abb. 2: Sphenoid, Ansicht von kranial. PROMETEUS: Lernatlas der Anatomie. Kopfund Neuroanatomie Thieme Verlag 2006, 25.
- Abb. 3: Sella turcica, Blutversorgung der Dura Mater. PROMETEUS: Lernatlas der Anatomie. Kopf- und Neuroanatomie Thieme Verlag 2006, 190.
- Abb. 4: Diencephalon, rechte Hirnhälfte von medial. PROMETEUS: Lernatlas der Anatomie. Kopf- und Neuroanatomie Thieme Verlag 2006, 210.
- Abb. 5: Hypophyse und Sinus cavernosum. SOBOTTA: Band 1. Kopf, Hals, obere Extremität 2000, 268.
- Abb. 6: Regulation in neuroendokrinen Hormonsystemen. KLINKE R./PAPE HC./SILBERNAGL ST.: Physiologie. Thieme Verlag 2005, 519.
- Abb. 7: Anheftungen der Reziproken Spannungsmembran. SUTHERLAND, W.G.: Teachings in the Science of Osteopathy. Rudra Press 1990, 40.
- Abb. 8: Flexion und Extension der SSB. SUTHERLAND, W.G.: Teachings in the Science of Osteopathy. Rudra Press 1990, 43.
- Abb. 9: Verbindungen der Faszien untereinander. PAOLETTI S.: Faszien. Anatomie, Strukturen, Techniken, Spezielle Osteopathie. Elsevier 2001, 111.
- Abb. 10: Occipito-sphenoidale Palpation nach J.E. Upledger. LIEM,T.: Kraniosakrale Osteopathie. Hippokrates Verlag 2005, 407.

13 Literaturverzeichnis

- AMAR A.P./WEISS M.H.: Pituitary anatomy and physiology. Neurosurg Clin N Am 13 (2003) 11–23.
- AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS: Practice Bulletin: Premenstrual syndrome. abgerufen 12.12.2010 unter www.acog.org.
- BARRAL J.P.: Viszerale Osteopathie in der Gynäkologie. Urogenitale Manipulation. Elsevier 2004.
- BARTELS R./BARTELS H.: Physiologie. Urban & Schwarzenberg 1998.
- BRÜHWILER H./SIEGER D./LÜSCHER K.: Primäre Dysmennorrhoe. Schweiz Med Forum (2006) 6: 919–922.
- CLAYTON/KELLER/LESLIE/EVANS: Exploratory study of premenstrual symptoms. Arch Womans Ment Health 2006.
- CAMPAGNE D.M.: The premenstrual syndrome revisited. European Journal of Obstetrics & Gynecology and reproductive Biology 130 (2007) 4-17.
- DALEY, A.: Exercise and premenstrual symptomatology: A comprehensive review. J. Womens Health (2009) 18(6) 895–899.
- DENNERSTEIN L.: Premenstrual symptoms Severity, duration and typology: An international cross-sectional study. Menopause Int (2009) 15: 120-126.
- DENNERSTEIN L.: The effect of premenstrual symptoms on activities of daily life.

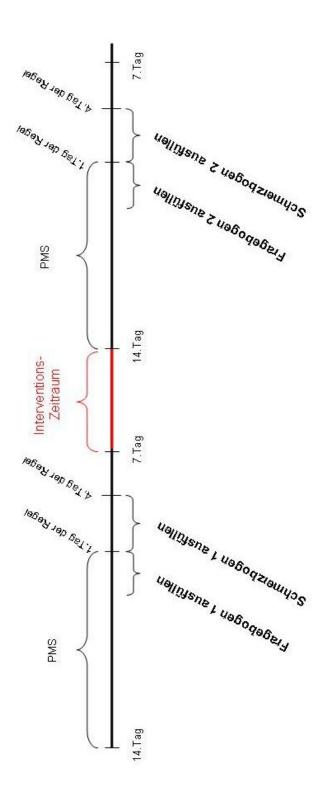
 American Society for Reproductive Medicine Vol 94 (3) 2010.
- FALLER, A.: Der Körper des Menschen. Thieme 1984.
- FREEMAN E.W./DERUBEIS R.J./RICKELS K.: Reliability and validity of a daily diary for premenstrual syndrome. Psychiatry Research 65 (1996) 97-106.
- FREEMAN E.W.: Premenstrual syndrome and premenstrual dysphoric disorder: Definitions and diagnosis 1. Psychoneuroendocrinology 28, 2003.

- FREEMAN E.W.: Core symtoms that discriminate premenstrual syndrome. Journal of Womans Health, Vol 20 (1), 2011.
- FRENCH L.: Dysmenorrhea. Am Fam Physician 2005, Jan15; 71(2):285-291.
- GRUNWALD K./RABE T./KIESEL L./RUNNEBAUM B.: Gynäkologische Endokrinologie und Fortpflanzungsmedizin Band 1. Springer Verlag 1994.
- HALBREICH U.: Clinical diagnostic criteria for premenstrual syndrome and guidelines for their quantification for research studies. Gynecological Endocrinology 2007, 23 (3), 123-130.
- HAREL Z./BIRO FM./KOTTENHAHN RK./ROSENTHAL SL.: Supplementation with omega-3 polyunsaturated fatty acids in the management of dysmenorrhea in adolescents. Am J Obstet Gynecol (1996) 174:1335–8.
- HARTMAN S.E./NORTON, J.M.: Interexaminer reliability and cranial osteopathy. The scientific review of alternative medicine, Vol 6, No.1, 2002.
- HARTMAN S.E.: Cranial osteopathy. Its fate seems clear. Chiropr Osteopat. 2006

 Jun 8, 14.
- HEIM S.: Does Osteopathic Treatment influence the Hormone level of hyperandrogaenemic infertile women? Masterthesis 2007.
- HERMANNS W.: GOT-Ganzheitliche osteopathische Therapie. Hippokrates 2007.
- KLEIN P.: Contribution a l'étude bioméchanique de la moelle épinière et de ses enveloppes. Mémoire pour le D.O. (ESO, Maidstone, UK) 1986.
- KLINKE R./PAPE HC./SILBERNAGL ST.: Physiologie. Thieme Verlag 2005.
- KUSANAGI H./KOGURE K./TERAMOTO A.: Pituitary insufficiency after penetrating injury to the sella turcica. J Nippon Med Sch 2 (2000) 67.
- LIEM T.: Praxis der Kraniosakralen Osteopathie. Hippokrates Verlag 2003.
- LIEM T.: Kraniosakrale Osteopathie. Hippokrates Verlag 2005.
- MAGOUN H.I.: Osteopathy in the Cranial Field. Journal Printing Company 1976.

- MAYO J.L.: Premenstrual Syndrome: A natural approach to management. CNI506, 8/99, Vol.5, No.6.
- MILEWICZ A./JEDRZEJUK D.: Premenstrual syndrome: From etiology to treatment. Maturitas 55S (2006) 77-54.
- MIHM M./ GANGOOLY S./MUTTUKRISHNA S.: The normal Menstrual Cycle in Women. Anim. Reprod. Sci. (2010), doi:10.1016/j.anireprosci.2010.08.030
- MITTERLEHNER TH.: Intertester Reliabilität von Palpationsbefunden von Dysfunktionen der Synchondrosis Sphenobasilaris. Masterthesis 2011.
- Moos R.H.: The development of a menstrual distress questionnaire. Psychosomatic Medicine Vol. XXX, No.6, 1968.
- Murray M.: A comprehensive evaluation of premenstrual syndrome. American Journal of Natural Medicine Vol 4 (2)1997.
- NASIR L.: Management of pelvic pain from Dysmenorrhea or Endometriosis. J Am Board Fam Pract 2004, 17:43–7.
- NELSON K.E./SERGUEEF N./LIPINSKI C.M./CHAPMAN A.R./GLONEK TH.: Cranial rhythmic impulse related to the Traube-Hering-Mayer oscillation: Comparing Laser-Doppler flowmetry and palpation. JAOA, Vol.101, No.3, 2001, 163-173.
- PAOLETTI S.: Faszien. Anatomie, Strukturen, Techniken, Spezielle Osteopathie. Elsevier 2001.
- PINTER-HAAS A./SCHACH-HIRTE J./WIRTHWEIN P.: Osteopathic treatment of women with primary dysmenorrhoea. A randomized controlled trial. Masterthesis 2007.
- PRITHAM U.: Managing PMS&PMDD. Exploring new treatment options. Awhonn Lifelines Vol 6, 5, 2002.
- PROCTOR M.L./SMITH C.A./FARQUHAR C.M./STONES R.W.: Transcutaneous electrical nerve stimulation and acupuncture for primary dysmenorrhoea. *Cochrane Database Syst Rev* 2002 (1): CD002123.

- PROCTOR ML./FARQUHAR CM.: Dysmenorrhoea. Clin Evid (Online). 2007; 2007: 0813.
- RENZ-POLSTER H./KRAUTZIG S.: Basislehrbuch Innere Medizin. Elsevier 2008.
- RIEPLER-REISECKER I.: Influence of osteopathic treatment on congestive menstrual disorders and premenstrual syndrome. Masterthesis 2006.
- ROCA C.: Differential Menstrual Cycle Regulation of Hypothalamic-Pituitary-Adrenal Axis in Women with Premenstrual Syndrome and Controls. The Journal of Clinical Endocrinology & Metabolism 2003 (7) 88: 3057–3063.
- ROGERS J.S./WITT PH.L./GROSS M.T./HACKE J.D./GENOVA P.A.: Simultaneous Palpation of the Craniosacral rate at the head and feet: Intrarater and Interrater. Reliability and rate comparisons. Phys. Ther. (1998) 78: 11.
- RUNNEBAUM B./RABE T.: Gynäkologische Endokrinologie und Fortpflanzungsmedizin. Springer Verlag 1994.
- RUSSELL M.B.: Genetics of Menstrual Migraine: The Epidemiological Evidence. Curr Pain Headache Rep (2010) 14: 385–388.
- SCHÜNKE M./SCHULTE E./SCHUMACHER U.: Prometheus, Lernatlas der Anatomie. Kopf- und Neuroanatomie. Thieme Verlag 2006.
- SILBERNAGL S./DESPOPOULOS A. Taschenatlas der Physiologie. Thieme Verlag 1991.
- SOMMERFELD P.: Inter- und Intratester-Reliabilität der Palpation des "Primären Respiratorischen Mechanismus" innerhalb des "Cranialen Konzeptes".


 Osteopathische Medizin, Heft 4, 2004.
- SPINELLI M.: Neuroendocrine effects on mood. Reviews in Endocrine & Metabolic Disorders 2005; 6: 109-115.
- STEINER M.: Premenstrual syndrome and premenstrual dysphoric disorder: guidelines for management. Journal of Psychiatry & Neuroscience Vol. 25, No5, 2000.
- STILL A.T.: Philosophy and mechanical principles of osteopathy. in: LIEM T.: Kraniosakrale Osteopathie. Hippokrates Verlag 2005, 445.

- SUTHERLAND W.G.: Teaching the Science of Osteopathy. Edited by Wales Anne. Rudra Press 1990.
- THANGARATINAM S./ISMAIL K./O´BRIAN S.: Evidence-based management of premenstrual syndrome. Eur Clinics Obstet Gynaecol (2006) 2: 65–71.
- TSCHUDIN S.: Prevalence and predictors of premenstrual syndrome and premenstrual dysphoric disorder in a population-based sample. Arch Womens Ment Health (2010) 13: 485-495.
- UPLEDGER J.E.: The reproducibility of craniosacral examination findings. JAOA (1977) 76: 890-899.
- UPLEDGER J.E./VREDEVOOGD J.D.: Lehrbuch der Kraniosakral-Therapie. Haug. Heidelberg 1994.
- VAN DEN BERG F.: Angewandte Physiologie. Schmerzen verstehen und beeinflussen. Band 4. Thieme Verlag 2003.
- VAN DEN BERG F.: Angewandte Physiologie. komplementäre Therapien verstehen und integrieren. Band 5. Thieme Verlag 2005.
- VON HEYMANN W./KOHRS C.: Was ist der "kraniosakrale Rhythmus"? Ein Beitrag zum Umgang mit der "kraniosakralen Osteopathie". Manuelle Medizin (2003) 44: 177-184.
- WILDY J.: Cranialosteopathie. Die Schädelbasis. Skript WSO 2004.
- WOOLVEN L.: Smart woman's guide to pms and pain-free periods. John Wiley & Sons 2008.
- YONKERS K.A.: Premenstrual Syndrome. Lancet (2008) 371: 1200–10.
- ZAHADRNIK H.P.: Prämenstruelles Syndrom: Ein gynäkologisches Problem. Gynäkologische Endokrinologie 2, 2004.
- ŽUKOV I.: Premenstrual Dysphoric Disorder–Review of actual findings about mental disorders related to menstrual cycle and possibilities of their therapy. Prague Medical Report Vol. 111 (2010) 1, 12–24.

14 Anhang

14.1 Fragebogen

Ablauf der Studie

Fragebogen 1 vor der Behandlung

Bitte 1-3 Tage VOR der Menstruation ausfüllen! (Zutreffendes ankreuzen)

Patient Nr. Alter

Geschichte

Zykluslänge	unter 28 Tagen	0	28-30 Tage	0	30-35 Tage	0	über 35 Tagen	0
Blutungsdauer	1-3 Tage	0	3-5 Tage	0	5-7 Tage	0	länger	0
Intensität der Blutung	kaum	0	leicht	0	mäßig	0	stark	0
Haben Sie bei jedem Zyklus Schmerzen / Beschwerden?	nein	0	ja	0				
Nehmen sie Schmerzmittel / andere Medikamente?	nein	0	ja	0				
Wenn ja:	Präparat				Tagesdosis ii mg	n	Dauer in Tag	en

Stärkstes Auftreten innerhalb der letzten 14 Tage bewerten:

Symptome	nein	1=mäßig		ja sta		sta	ark=6	
[
Affektive Symptome								
Depression/Traurigkeit/Niedergeschlagenheit	0	1	2	3	4	5	6	
Zornausbrüche	0	1	2	3	4	5	6	
Reizbarkeit	0	1	2	3	4	5	6	
Ängstlichkeit	0	1	2	3	4	5	6	
Desinteresse an üblichen Aktivitäten des täglichen Lebens oder sich zurückziehen	0	1	2	3	4	5	6	
Verwirrtheit	0	1	2	3	4	5	6	
Schnell die Beherrschung verlieren	0	1	2	3	4	5	6	
Unruhe	0	1	2	3	4	5	6	
Hoffnungslosigkeit	0	1	2	3	4	5	6	
Angespanntheit	0	1	2	3	4	5	6	
Stimmungsschwankungen	0	1	2	3	4	5	6	
Energielosigkeit/Müdigkeit	0	1	2	3	4	5	6	
Konzentrationsschwierigkeiten	0	1	2	3	4	5	6	
Physische Symptome								
Brustspannen	0	1	2	3	4	5	6	
Sich aufgedunsen/aufgebläht fühlen	0	1	2	3	4	5	6	
Kopfschmerzen	0	1	2	3	4	5	6	
Anschwellen der Extremitäten	0	1	2	3	4	5	6	
Gelenks- oder Muskelschmerzen oder Rückenschmerzen	0	1	2	3	4	5	6	

Schlafstörungen	0	1	2	3	4	5	6
Bauchkrämpfe	0	1	2	3	4	5	6
Gewichtszunahme	0	1	2	3	4	5	6
Hautunreinheiten	0	1	2	3	4	5	6
Veränderter Appetit	0	1	2	3	4	5	6

Schmerz-Fragebogen 1 vor der Behandlung

Bitte ab dem 1. Tag der Menstruation täglich ausfüllen!

Zutreffendes ankreuzen bzw. Linie zwischen 1 und 10 durch einen Strich unterbrechen.

1. Tag

	nein	1=leicht	ja	stark=10
Tiefer Rückenschmerz	0	1		10
Krampfartige Schmerzen im Uterus/Abdominalbereich	0	1		10

2. Tag

	nein	1=leicht	ja	stark=10
Tiefer Rückenschmerz	0	1		10
Krampfartige Schmerzen im Uterus/Abdominalbereich	0	1		10

3. Tag

	nein	1=leicht	ja	stark=10
Tiefer Rückenschmerz	0	1		10
Krampfartige Schmerzen im Uterus/Abdominalbereich	0	1		10

Fragebogen 2 nach der Behandlung

Bitte 1-3 Tage VOR der Menstruation ausfüllen! (Zutreffendes ankreuzen)

Geschichte

Zykluslänge	unter 28 Tagen	0	28-30 Tage	0	30-35 Tage	0	über 35 Tagen	0
Blutungsdauer	1-3 Tage	0	3-5 Tage	0	5-7 Tage	0	länger	0
Intensität der Blutung	kaum	0	leicht	0	mäßig	0	stark	0
Haben Sie bei jedem Zyklus Schmerzen/Beschwerden?	nein	0	ja	0				
Nehmen sie Schmerzmittel/ andere Medikamente?	nein	0	ja	0				
Wenn ja:	Präparat				Tagesdosis mg	in	Dauer in Tag	en

Stärkstes Auftreten innerhalb der letzten 14 Tage bewerten:

Symptome	nein	1=m	äßig	ja		staı	k=6
Affalation Community							
Affektive Symptome		Т					
Depression/Traurigkeit/Niedergeschlagenheit	0	1	2	3	4	5	6
Zornausbrüche	0	1	2	3	4	5	6
Reizbarkeit	0	1	2	3	4	5	6
Ängstlichkeit	0	1	2	3	4	5	6
Desinteresse an üblichen Aktivitäten des täglichen Lebens oder sich zurückziehen	0	1	2	3	4	5	6
Verwirrtheit	0	1	2	3	4	5	6
Schnell die Beherrschung verlieren	0	1	2	3	4	5	6
Unruhe	0	1	2	3	4	5	6
Hoffnungslosigkeit	0	1	2	3	4	5	6
Angespanntheit	0	1	2	3	4	5	6
Stimmungsschwankungen	0	1	2	3	4	5	6
Energielosigkeit/Müdigkeit	0	1	2	3	4	5	6
Konzentrationsschwierigkeiten	0	1	2	3	4	5	6
Physische Symptome							
Brustspannen	0	1	2	3	4	5	6
Sich aufgedunsen/aufgebläht fühlen	0	1	2	3	4	5	6
Kopfschmerzen	0	1	2	3	4	5	6
Anschwellen der Extremitäten	0	1	2	3	4	5	6
Gelenks- oder Muskelschmerzen oder Rückenschmerzen	0	1	2	3	4	5	6
Schlafstörungen	0	1	2	3	4	5	6

Bauchkrämpfe	0	1	2	3	4	5	6
Gewichtszunahme	0	1	2	3	4	5	6
Hautunreinheiten	0	1	2	3	4	5	6
Veränderter Appetit	0	1	2	3	4	5	6

Schmerz - Fragebogen 2 nach der Behandlung

Bitte ab dem 1. Tag der Menstruation täglich ausfüllen!

Zutreffendes ankreuzen bzw. Linie zwischen 1 und 10 durch einen Strich unterbrechen.

1. Tag

	nein	1=leicht	ja	stark=10
Tiefer Rückenschmerz	0	1		10
Krampfartige Schmerzen im Uterus/Abdominalbereich	0	1		10

2. Tag

	nein	1=leicht	ja	stark=10
Tiefer Rückenschmerz	0	1		10
Krampfartige Schmerzen im Uterus/Abdominalbereich	0	1		10

3. Tag

	nein	1=leicht	ja	stark=10
Tiefer Rückenschmerz	0	1		10
Krampfartige Schmerzen im Uterus/Abdominalbereich	0	1 10)	

14.2 Statistische Analysen

14.2.1 Allgemeines

Verwendete Variablen und Benennungen mit Bezug auf den Fragebogen:

- Alter
- Geschichte
- Die erhobenen Parameter wurden der Reihe nach mit G1-G5 und der Name der "Medikamente", deren "Tagesdosis" sowie "Dauer in Tagen" der Einnahme bezeichnet
- Symptome
- Affektive Symptome wurden der Reihe nach mit A1-A13 und deren Summe mit A_Summe bezeichnet
- Physische Symptome wurden der Reihe nach mit P1-P10 und deren Summe mit P_Summe bezeichnet
- Schmerz VAS
- Rücken- bzw. Uterus/Abdominalschmerzen wurden für Tag 1-Tag 3 mit je R1/U1 – R3/U3 bezeichnet

Für die Auswertung der Summe affektiver und physischer Symptome, sowie für die Variablen R1/U1 – R3/U3 wurden die Probandinnen wir folgt bezeichnet:

Kontrollgruppe: vor Behandlung A

nach Behandlung B

Interventionsgruppe: vor Behandlung C

nach Behandlung D

Die Art der Behandlung und der Zeitpunkt wurden wie folgt bezeichnet:

Kontrollgruppe: treat=0

Interventionsgruppe: treat=1

vor Behandlung: time=1

nach Behandlung: time=2

14.2.2 Prüfung auf Normalverteilung

Die Prüfung auf Normalverteilung erfolgte mit einem *Kolmogorov-Smirnov Test* auf Normalverteilung. Es wurden jeweils alle Datensätze zur Prüfung herangezogen.

Summary statistics

Variable	Alter	
Sample size		40
Lowest value		<u>27,0000</u>
Highest value		<u>45,0000</u>
Arithmetic mean		36,0500
95% CI for the mean		34,5962 to 37,5038
Median		36,0000
95% CI for the median		33,3389 to 37,6611
Variance		20,6641
Standard deviation		4,5458
Relative standard deviation		0,1261 (12,61%)
Standard error of the mean		0,7188
Coefficient of Skewness		0,02445 (P=0,9449)
Coefficient of Kurtosis		-0,5703 (P=0,3478)
Kolmogorov-Smirnov test for Normal distribution		accept Normality (P=0,7195)

Percentiles		95% Confidence Interval
2,5	27,0000	
5	28,5000	
10	30,5000	27,0000 to 32,0000
25	32,5000	31,0000 to 34,1250
75	40,0000	37,0000 to 42,0000
90	42,0000	40,0000 to 45,0000
95	43,5000	
97,5	45,0000	

Variable	Dauer_in_Tagen Dauer in Tagen

Sample size	31
Lowest value	<u>1,0000</u>
Highest value	3,0000
Arithmetic mean	1,8065
95% CI for the mean	1,5665 to 2,0464
Median	2,0000
95% CI for the median	1,5856 to 2,0000
Variance	0,4280
Standard deviation	0,6542
Relative standard deviation	0,3621 (36,21%)
Standard error of the mean	0,1175
Coefficient of Skewness	0,2138 (P=0,5918)
Coefficient of Kurtosis	-0,5744 (P=0,3774)
Kolmogorov-Smirnov test	reject Normality (P=0,0072)

for Normal distribution	
L	·

Percentiles		95% Confidence Interval
2,5	1,0000	
5	1,0000	
10	1,0000	
25	1,0000	1,0000 to 2,0000
75	2,0000	2,0000 to 3,0000
90	3,0000	
95	3,0000	
97,5	3,0000	

Variable	A_Summe	1
	A Summe	

Sample size	40
Lowest value	<u>0,0000</u>
Highest value	<u>57,0000</u>
Arithmetic mean	18,9250
95% CI for the mean	14,1338 to 23,7162
Median	17,0000
95% CI for the median	12,0000 to 22,3222
Variance	224,4301
Standard deviation	14,9810
Relative standard deviation	0,7916 (79,16%)
Standard error of the mean	2,3687
Coefficient of Skewness	0,8629 (P=0,0255)
Coefficient of Kurtosis	0,3712 (P=0,4740)
Kolmogorov-Smirnov test for Normal distribution	accept Normality (P=0,7650)

Percentiles		95% Confidence Interval
2,5	0,0000	
5	0,0000	
10	0,0000	0,0000 to 5,0000
25	8,5000	1,2628 to 13,0000
75	26,0000	20,0000 to 36,0000
90	41,0000	29,3250 to 56,4951
95	51,0000	
97,5	56,0000	

Variable P_Summe P Summe	
--------------------------	--

Sample size	40
Lowest value	<u>0,0000</u>
Highest value	<u>44,0000</u>
Arithmetic mean	21,9250
95% CI for the mean	18,5650 to 25,2850
Median	24,0000
95% CI for the median	17,3389 to 26,6611

Variance	110,3788
Standard deviation	10,5061
Relative standard deviation	0,4792 (47,92%)
Standard error of the mean	1,6612
Coefficient of Skewness	-0,1923 (P=0,5889)
Coefficient of Kurtosis	0,08456 (P=0,7281)
Kolmogorov-Smirnov test for Normal distribution	accept Normality (P=0,7646)

Percentiles		95% Confidence Interval
2,5	0,0000	
5	1,0000	
10	6,5000	0,0000 to 15,5350
25	16,0000	9,2628 to 18,0625
75	29,0000	25,9375 to 32,7372
90	34,5000	29,0000 to 44,0000
95	40,0000	
97,5	44,0000	

Variable	R1
----------	----

Sample size	40
Lowest value	0,0000
Highest value	<u>89,0000</u>
Arithmetic mean	50,0750
95% CI for the mean	39,7668 to 60,3832
Median	67,5000
95% CI for the median	38,0000 to 74,0000
Variance	1038,8917
Standard deviation	32,2318
Relative standard deviation	0,6437 (64,37%)
Standard error of the mean	5,0963
Coefficient of Skewness	-0,4628 (P=0,2039)
Coefficient of Kurtosis	-1,4704 (P=0,0853)
Kolmogorov-Smirnov test for Normal distribution	reject Normality (P=0,0289)

Percentiles		95% Confidence Interval
2,5	0,0000	
5	0,0000	
10	0,5000	0,0000 to 11,0000
25	13,5000	2,2628 to 42,4375
75	76,5000	72,9375 to 83,5791
90	84,5000	77,9300 to 88,7476
95	87,0000	
97,5	88,5000	

Variable	R2	

Sample size	40

Lowest value	0,0000
Highest value	79,0000
Arithmetic mean	35,6750
95% CI for the mean	26,4665 to 44,8835
Median	39,0000
95% CI for the median	12,3389 to 52,0000
Variance	829,0455
Standard deviation	28,7932
Relative standard deviation	0,8071 (80,71%)
Standard error of the mean	4,5526
Coefficient of Skewness	0,03072 (P=0,9309)
Coefficient of Kurtosis	-1,5939 (P=0,0708)
Kolmogorov-Smirnov test for Normal distribution	accept Normality (P=0,2385)

Percentiles		95% Confidence Interval
2,5	0,0000	
5	0,0000	
10	0,0000	0,0000 to 0,5350
25	6,0000	0,0000 to 16,3125
75	59,5000	51,9375 to 72,5791
90	74,5000	68,0000 to 78,2427
95	76,0000	
97,5	77,5000	

Variable	R3

Sample size	40
Lowest value	<u>0,0000</u>
Highest value	<u>79,0000</u>
Arithmetic mean	16,2500
95% CI for the mean	9,5170 to 22,9830
Median	11,5000
95% CI for the median	0,0000 to 16,0000
Variance	443,2179
Standard deviation	21,0527
Relative standard deviation	1,2956 (129,56%)
Standard error of the mean	3,3287
Coefficient of Skewness	1,5813 (P=0,0003)
Coefficient of Kurtosis	1,8288 (P=0,0499)
Kolmogorov-Smirnov test for Normal distribution	reject Normality (P=0,0068)

Percentiles		95% Confidence Interval
2,5	0,000	
5	0,0000	
10	0,000	0,0000 to 0,0000
25	0,000	0,0000 to 3,1875
75	17,0000	15,8750 to 45,5791
90	49,5000	26,4402 to 77,4853
95	64,5000	
97,5	76,0000	

Variable U1	
-------------	--

Sample size	40
Lowest value	0,0000
Highest value	<u>100,0000</u>
Arithmetic mean	62,3500
95% CI for the mean	53,3877 to 71,3123
Median	73,0000
95% CI for the median	51,3555 to 81,0000
Variance	785,3103
Standard deviation	28,0234
Relative standard deviation	0,4495 (44,95%)
Standard error of the mean	4,4309
Coefficient of Skewness	-0,8819 (P=0,0229)
Coefficient of Kurtosis	-0,06842 (P=0,7452)
Kolmogorov-Smirnov test for Normal distribution	accept Normality (P=0,1157)

Percentiles		95% Confidence Interval
2,5	0,0000	
5	0,0000	
10	17,0000	0,0000 to 40,6050
25	46,0000	24,9465 to 58,5000
75	83,0000	76,8750 to 88,1581
90	90,5000	84,0000 to 99,4951
95	98,0000	
97,5	99,0000	

Variable	U2
----------	----

Sample size	40
Lowest value	<u>0,0000</u>
Highest value	90,0000
Arithmetic mean	46,0750
95% CI for the mean	36,8029 to 55,3471
Median	49,0000
95% CI for the median	36,0000 to 62,3222
Variance	840,5327
Standard deviation	28,9919
Relative standard deviation	0,6292 (62,92%)
Standard error of the mean	4,5840
Coefficient of Skewness	-0,1157 (P=0,7442)
Coefficient of Kurtosis	-1,2551 (P=0,1187)
Kolmogorov-Smirnov test for Normal distribution	accept Normality (P=0,7957)

Percentiles		95% Confidence Interval
2,5	0,0000	
5	0,0000	
10	4,5000	0,0000 to 13,0000

25	17,5000	8,1047 to 37,1250
75	70,5000	58,8750 to 83,3163
90	85,5000	75,0000 to 90,0000
95	88,5000	
97,5	90,0000	

		_
Variable	U3	

Sample size	40
Lowest value	<u>0,0000</u>
Highest value	<u>74,0000</u>
Arithmetic mean	19,5000
95% CI for the mean	11,5759 to 27,4241
Median	8,0000
95% CI for the median	0,0000 to 17,0000
Variance	613,8974
Standard deviation	24,7770
Relative standard deviation	1,2706 (127,06%)
Standard error of the mean	3,9176
Coefficient of Skewness	1,1500 (P=0,0047)
Coefficient of Kurtosis	-0,1439 (P=0,6678)
Kolmogorov-Smirnov test for Normal distribution	reject Normality (P=0,0412)

Percentiles		95% Confidence Interval
2,5	0,000	
5	0,0000	
10	0,0000	0,0000 to 0,0000
25	0,0000	0,0000 to 3,1875
75	31,5000	16,7500 to 61,6326
90	67,0000	44,5101 to 72,9902
95	69,5000	
97,5	72,0000	

14.2.3 Vergleichbarkeit der Kontroll- und Interventionsgruppe vor der Behandlung (Zeitpunkt 1)

Frequency table & Chi-square test

Codes X	G1
Codes Y	treat
Select	time=1

	Codes X				
Codes Y	1	2	3	4	
0	4	5	1	0	10 (50,0%)
1	3	5	1	1	10 (50,0%)
	7	10	2	1	20
	(35,0%)	(50,0%)	(10,0%)	(5,0%)	

Chi-square	1,143
DF	3
Significance level	P = 0,7667
Chi-square test for trend	
Chi-square (trend)	0,717
DF	1
Significance level	P = 0,3971

Frequency table & Chi-square test

Codes X	G2
Codes Y	treat
Select	time=1

	Codes X			
Codes Y	2	3	4	
0	5	4	1	10 (50,0%)
1	2	8	0	10 (50,0%)
	7	12	1	20
	(35,0%)	(60,0%)	(5,0%)	

Chi-square	3,619
DF	2
Significance level	P = 0,1637
Chi-square test for trend	
Chi-square (trend)	0,645
DF	1
Significance level	P = 0,4218

Frequency table & Chi-square test

Codes X	G3
Codes Y	treat
Select	time=1

	Codes X			
Codes Y	2	3	4	
0	1	4	5	10 (50,0%)
1	2	5	3	10 (50,0%)
	3	9	8	20
	(15,0%)	(45,0%)	(40,0%)	

Chi-square	0,944
DF	2
Significance level	P = 0,6236
Chi-square test for trend	
Chi-square (trend)	0,923
DF	1
Significance level	P = 0,3367

Frequency table & Chi-square test

Codes X	G4
Codes Y	treat
Select	time=1

	Code		
Codes Y	0	1	
0	0	10	10 (50,0%)
1	3	7	10 (50,0%)
	3	17	20
	(15,0%)	(85,0%)	

Chi-square	1,569
DF	1
Significance level	P = 0,2104
Contingency coefficient	0,270

Codes X	G5	1
Codes Y	treat	1
Select	time=1	1

	Code		
Codes Y	0	1	
0	2	8	10 (50,0%)
1	2	8	10 (50,0%)
	4	16	20
	(20,0%)	(80,0%)	

Chi-square	0,312
DF	1
Significance level	P = 0,5762
Contingency coefficient	0,124

Independent samples t-test

Sample 1	
Variable	Alter
Select	Gruppe="a"
Sample 2	
Variable	Alter
Select	Gruppe="c"

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	35,9000	36,2000
95% CI for the mean	32,2610 to 39,5390	33,0946 to 39,3054
Variance	25,8778	18,8444
Standard deviation	5,0870	4,3410
Standard error of the mean	1,6087	1,3728

F-test for equal variances	P = 0,644

T-test (assuming equal variances)

Difference	0,3000
Standard Error	2,1148
95% CI of difference	-4,1430 to 4,7430

Test statistic t	0,142
Degrees of Freedom (DF)	18
Two-tailed probability	P = 0,8888

14.2.4. Vergleichbarkeit der Kontroll- und Interventionsgruppe vor der Behandlung (Zeitpunkt 2)

Frequency table & Chi-square test

Codes X	G1
Codes Y	treat
Select	time=2

		Codes X			
Codes Y	1	2	3	4	
0	4	5	1	0	10 (50,0%)
1	3	4	2	1	10 (50,0%)
	7	9	3	1	20
	(35,0%)	(45,0%)	(15,0%)	(5,0%)	

Chi-square	1,587
DF	3
Significance level	P = 0,6623
Chi-square test for trend	
Chi-square (trend)	1,159
DF	1
Significance level	P = 0,2816

Frequency table & Chi-square test

Codes X	G2
Codes Y	treat
Select	time=2

	Codes X				
Codes Y	2	3	4	33	
0	5	4	1	0	10 (50,0%)
1	2	7	0	1	10 (50,0%)
	7	11	1	1	20
	(35,0%)	(55,0%)	(5,0%)	(5,0%)	

Chi-square	4,104
DF	3
Significance level	P = 0,2505
Chi-square test for trend	
Chi-square (trend)	1,429
DF	1
Significance level	P = 0,2320

Codes X	G3
Codes Y	treat

Select	time=2	
--------	--------	--

	Codes X			
Codes Y	2	3	4	
0	1	4	5	10 (50,0%)
1	2	5	3	10 (50,0%)
	3	9	8	20
	(15,0%)	(45,0%)	(40,0%)	

Chi-square	0,944
DF	2
Significance level	P = 0,6236
Chi-square test for trend	
Chi-square (trend)	0,923
DF	1
Significance level	P = 0,3367

Codes X	G4	
Codes Y	treat	1
Select	time=2	1

	Codes X		
Codes Y	0	1	
0	0	10	10 (50,0%)
1	3	7	10 (50,0%)
	3	17	20
	(15,0%)	(85,0%)	

Chi-square	1,569
DF	1
Significance level	P = 0,2104
Contingency coefficient	0,270

Codes X	G5
Codes Y	treat
Select	time=2

	Codes X		
Codes Y	0	1	
0	2	8	10 (50,0%)
1	3	7	10 (50,0%)
	5	15	20
	(25,0%)	(75,0%)	

Chi-square	0,000
DF	1
Significance level	P = 1,0000
Contingency coefficient	0,000

14.2.5. Vergleich der G-Variablen von Zeitpunkt 1 vs. Zeitpunkt 2 in der Kontrollgruppe

Frequency table & Chi-square test

Codes X	G1	
Codes Y	time	1
Select	treat=0	

	Codes X			
Codes Y	1	2	3	
1	4	5	1	10 (50,0%)
2	4	5	1	10 (50,0%)
	8	10	2	20
	(40,0%)	(50,0%)	(10,0%)	

Chi-square	0,000
DF	2
Significance level	P = 1,0000
Chi-square test for trend	
Chi-square (trend)	0,000
DF	1
Significance level	P = 1,0000

Frequency table & Chi-square test

Codes X	G2	1
Codes Y	time	i
Select	treat=0	ĺ

	Codes X			
Codes Y	2	3	4	
1	5	4	1	10 (50,0%)
2	5	4	1	10 (50,0%)
	10	8	2	20
	(50,0%)	(40,0%)	(10,0%)	

Chi-square	0,000
DF	2
Significance level	P = 1,0000
Chi-square test for trend	
Chi-square (trend)	0,000
DF	1
Significance level	P = 1,0000

Codes X	G3
Codes Y	time
Select	treat=0

	Codes X		
Codes Y	2	3	4

1	1	4	5	10 (50,0%)
2	1	4	5	10 (50,0%)
	2	8	10	20
	(10,0%)	(40,0%)	(50,0%)	

Chi-square	0,000
DF	2
Significance level	P = 1,0000
Chi-square test for trend	
Chi-square (trend)	0,000
DF	1
Significance level	P = 1,0000

Codes X	G4
Codes Y	time
Select	treat=0

	Codes X	
Codes Y	1	
1	10	10 (50,0%)
2	10	10 (50,0%)
	20	20
	(100,0%)	

Chi-square	0,050
DF	1
Significance level	P = 0,8231
Contingency coefficient	0,050

Codes X	G5
Codes Y	time
Select	treat=0

	Codes X		
Codes Y	0	1	
1	2	8	10 (50,0%)
2	2	8	10 (50,0%)
	4	16	20
	(20,0%)	(80,0%)	

Chi-square	0,312
DF	1
Significance level	P = 0,5762
Contingency coefficient	0,124

14.2.6. Vergleich der G-Variablen von Zeitpunkt 1 vs. Zeitpunkt 2 in der Interventionsgruppe

Frequency table & Chi-square test

Codes X	G1
Codes Y	time
Select	treat=1

	Codes X				
Codes Y	1	2	3	4	
1	3	5	1	1	10 (50,0%)
2	3	4	2	1	10 (50,0%)
	6	9	3	2	20
	(30,0%)	(45,0%)	(15,0%)	(10,0%)	

Chi-square	0,444
DF	3
Significance level	P = 0,9309
Chi-square test for trend	
Chi-square (trend)	0,059
DF	1
Significance level	P = 0,8081

Frequency table & Chi-square test

Codes X	G2
Codes Y	time
Select	treat=1

	Codes X			
Codes Y	2	3	33	
1	2	8	0	10 (50,0%)
2	2	7	1	10 (50,0%)
	4	15	1	20
	(20,0%)	(75,0%)	(5,0%)	

Chi-square	1,067
DF	2
Significance level	P = 0,5866
Chi-square test for trend	
Chi-square (trend)	0,220
DF	1
Significance level	P = 0,6392

Codes X	G3
Codes Y	time
Select	treat=1

	Codes X		
Codes Y	2	3	4

1	2	5	3	10 (50,0%)
2	2	5	3	10 (50,0%)
	4	10	6	20
	(20,0%)	(50,0%)	(30,0%)	

Chi-square	0,000
DF	2
Significance level	P = 1,0000
Chi-square test for trend	
Chi-square (trend)	0,000
DF	1
Significance level	P = 1,0000

Codes X	G4	ì
Codes Y	time	ì
Select	treat=1	ì

	Codes X		
Codes Y	0	1	
1	3	7	10 (50,0%)
2	3	7	10 (50,0%)
	6	14	20
	(30,0%)	(70,0%)	

Chi-square	0,238
DF	1
Significance level	P = 0,6256
Contingency coefficient	0,108

Codes X	G5
Codes Y	time
Select	treat=1

	Codes X		
Codes Y	0	1	
1	2	8	10 (50,0%)
2	3	7	10 (50,0%)
	5	15	20
	(25,0%)	(75,0%)	

Chi-square	0,000
DF	1
Significance level	P = 1,0000
Contingency coefficient	0,000

14.2.7 Dauer der medikamentösen Therapie

Frequency table & Chi-square test

Codes X	Dauer_in_Tagen Dauer in Tagen
Codes Y	treat
Select	time=1

	Codes X			
Codes Y	1	2	3	
0	0	6	2	8 (50,0%)
1	5	3	0	8 (50,0%)
	5	9	2	16
	(31,2%)	(56,2%)	(12,5%)	

Chi-square	8,000
DF	2
Significance level	P = 0,0183
Chi-square test for trend	
Chi-square (trend)	7,612
DF	1
Significance level	P = 0,0058

Frequency table & Chi-square test

Codes X	Dauer_in_Tagen Dauer in Tagen
Codes Y	treat
Select	time=2

		Codes X		
Codes Y	1	2	3	
0	0	6	2	8 (53,3%)
1	5	2	0	7 (46,7%)
	5	8	2	15
	(33,3%)	(53,3%)	(13,3%)	

Chi-square	8,973
DF	2
Significance level	P = 0,0113
Chi-square test for trend	
Chi-square (trend)	8,136
DF	1
Significance level	P = 0,0043

Codes X	Dauer_in_Tagen
	Dauer in Tagen
Codes Y	time
Select	treat=1

Codes X

Codes Y	1	2	
1	5	3	8 (53,3%)
2	5	2	7 (46,7%)
	10	5	15
	(66,7%)	(33,3%)	

Chi-square Chi-square	0,033
DF	1
Significance level	P = 0,8548
Contingency coefficient	0,047

Codes X	Dauer_in_Tagen Dauer in Tagen
Codes Y	time
Select	treat=0

	Cod	Codes X	
Codes Y	2	3	
1	6	2	8 (50,0%)
2	6	2	8 (50,0%)
	12	4	16
	(75,0%)	(25,0%)	

Chi-square	0,333
DF	1
Significance level	P = 0,5637
Contingency coefficient	0,143

14.2.8 Affektive und physische Symptome vor Behandlung

Codes X	A1
Codes Y	treat
Select	time=1

		Codes X				
Codes Y	0	1	2	5	6	
0	7	1	0	0	2	10 (50,0%)
1	6	1	2	1	0	10 (50,0%)
	13	2	2	1	2	20
	(65,0%)	(10,0%)	(10,0%)	(5,0%)	(10,0%)	

Chi-square	5,077
DF	4
Significance level	P = 0,2795
Chi-square test for trend	
Chi-square (trend)	0,027
DF	1
Significance level	P = 0,8686

Codes X	A2
Codes Y	treat
Select	time=1

		Codes X						
Codes Y	0	1	2	3	4	5	6	
0	4	1	2	1	1	0	1	10 (50,0%)
1	4	3	1	1	0	1	0	10 (50,0%)
	8	4	3	2	1	1	1	20
	(40,0%)	(20,0%)	(15,0%)	(10,0%)	(5,0%)	(5,0%)	(5,0%)	

Chi-square	4,333
DF	6
Significance level	P = 0,6317
Chi-square test for trend	
Chi-square (trend)	0,397
DF	1
Significance level	P = 0,5286

Frequency table & Chi-square test

Codes X	A3
Codes Y	treat
Select	time=1

		Codes X						
Codes Y	0	1	2	3	4	5	6	
0	4	0	1	2	0	1	2	10 (50,0%)
1	0	2	2	2	3	1	0	10 (50,0%)
	4	2	3	4	3	2	2	20
	(20,0%)	(10,0%)	(15,0%)	(20,0%)	(15,0%)	(10,0%)	(10,0%)	

Chi-square	11,333
DF	6
Significance level	P = 0,0786
Chi-square test for trea	nd
Chi-square (trend)	0,216
DF	1
Significance level	P = 0,6424

Codes X	A4
Codes Y	treat
Select	time=1

Codes Y	0	1	2	
0	9	0	1	10 (50,0%)
1	8	2	0	10 (50,0%)
	17	2	1	20
	(85,0%)	(10,0%)	(5,0%)	

Chi-square	3,059
DF	2
Significance level	P = 0,2167
Chi-square test for trend	
Chi-square (trend)	0,000
DF	1
Significance level	P = 1,0000

Codes X	A5
Codes Y	treat
Select	time=1

		Codes X				
Codes Y	0	2	3	4		
0	4	1	3	2	10 (50,0%)	
1	5	0	2	3	10 (50,0%)	
	9	1	5	5	20	
	(45,0%)	(5,0%)	(25,0%)	(25,0%)		

Chi-square	1,511
DF	3
Significance level	P = 0,6797
Chi-square test for trend	
Chi-square (trend)	0,000
DF	1
Significance level	P = 1,0000

Frequency table & Chi-square test

Codes X	A6
Codes Y	treat
Select	time=1

		Codes X				
Codes Y	0	1	2	5		
0	8	0	1	1	10 (50,0%)	
1	8	2	0	0	10 (50,0%)	
	16	2	1	1	20	
	(80,0%)	(10,0%)	(5,0%)	(5,0%)		

Chi-square	4,000
DF	3
Significance level	P = 0,2615
Chi-square test for trend	
Chi-square (trend)	0,717
DF	1
Significance level	P = 0.3971

Codes X	A7
Codes Y	treat
Select	time=1

		Codes X						
Codes Y	0	1	2	3	4	5	6	
0	3	1	3	0	0	1	2	10 (50,0%)
1	0	3	2	3	1	0	1	10 (50,0%)
	3	4	5	3	1	1	3	20
	(15,0%)	(20,0%)	(25,0%)	(15,0%)	(5,0%)	(5,0%)	(15,0%)	

Chi-square	9,533
DF	6
Significance level	P = 0,1457
Chi-square test for tree	nd
Chi-square (trend)	0,053
DF	1
Significance level	P = 0,8174

Codes X	A8
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	1	2	3	4	6	
0	5	0	0	3	0	2	10 (50,0%)
1	5	1	1	2	1	0	10 (50,0%)
	10	1	1	5	1	2	20
	(50,0%)	(5,0%)	(5,0%)	(25,0%)	(5,0%)	(10,0%)	

Chi-square	5,200
DF	5
Significance level	P = 0,3920
Chi-square test for trend	
Chi-square (trend)	0,556
DF	1
Significance level	P = 0,4561

Codes X	A9
Codes Y	treat
Select	time=1

	Codes X	
Codes Y	0	
0	10	10 (50,0%)
1	10	10 (50,0%)
	20	20
	(100,0%)	

Chi-square	0,050
DF	1
Significance level	P = 0,8231
Contingency coefficient	0,050

Codes X	A10
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	1	2	3	4	5	
0	4	2	2	1	0	1	10 (50,0%)
1	2	1	3	3	1	0	10 (50,0%)
	6	3	5	4	1	1	20
	(30,0%)	(15,0%)	(25,0%)	(20,0%)	(5,0%)	(5,0%)	

Chi-square	4,200
DF	5
Significance level	P = 0,5210
Chi-square test for trend	
Chi-square (trend)	0,853
DF	1
Significance level	P = 0,3557

Frequency table & Chi-square test

Codes X	A11
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	2	3	4	5	6	
0	2	2	2	1	1	2	10 (50,0%)
1	1	1	2	4	2	0	10 (50,0%)
	3	3	4	5	3	2	20
	(15,0%)	(15,0%)	(20,0%)	(25,0%)	(15,0%)	(10,0%)	

Chi-square	4,800
DF	5
Significance level	P = 0,4408
Chi-square test for trend	
Chi-square (trend)	0,085
DF	1
Significance level	P = 0,7700

Codes X	A12
Codes Y	treat
Select	time=1

		Codes X						
Codes Y	0	1	2	3	4	5	6	
0	4	1	0	2	0	2	1	10 (50,0%)
1	1	1	1	3	2	2	0	10 (50,0%)
	5	2	1	5	2	4	1	20
	(25,0%)	(10,0%)	(5,0%)	(25,0%)	(10,0%)	(20,0%)	(5,0%)	

Chi-square	6,000
DF	6
Significance level	P = 0,4232
Chi-square test for trea	nd
Chi-square (trend)	0,624
DF	1
Significance level	P = 0,4296

Codes X	A13
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	1	2	5			
0	8	0	1	1	10 (50,0%)		
1	9	1	0	0	10 (50,0%)		
	17	1	1	1	20		
	(85,0%)	(5,0%)	(5,0%)	(5,0%)			

Chi-square	3,059
DF	3
Significance level	P = 0,3826
Chi-square test for trend	
Chi-square (trend)	1,311
DF	1
Significance level	P = 0,2521

Frequency table & Chi-square test

Codes X	P1
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	1	3	4	5	6	
0	3	1	0	3	1	2	10 (50,0%)
1	2	0	1	2	4	1	10 (50,0%)
	5	1	1	5	5	3	20
	(25,0%)	(5,0%)	(5,0%)	(25,0%)	(25,0%)	(15,0%)	

Chi-square	4,533
DF	5
Significance level	P = 0,4754
Chi-square test for trend	
Chi-square (trend)	0,387
DF	1
Significance level	P = 0,5337

Codes X	P2
Codes Y	treat

Select	time=1
--------	--------

		Codes X				
Codes Y	0	2	3	4	5	
0	1	2	2	4	1	10 (50,0%)
1	1	1	4	2	2	10 (50,0%)
	2	3	6	6	3	20
	(10,0%)	(15,0%)	(30,0%)	(30,0%)	(15,0%)	

Chi-square	2,000
DF	4
Significance level	P = 0,7358
Chi-square test for trend	
Chi-square (trend)	0,036
DF	1
Significance level	P = 0,8494

Codes X	P3
Codes Y	treat
Select	time=1

		Codes X				
Codes Y	0	1	3	4	5	
0	7	0	1	1	1	10 (50,0%)
1	8	1	0	1	0	10 (50,0%)
	15	1	1	2	1	20
	(75,0%)	(5,0%)	(5,0%)	(10,0%)	(5,0%)	

Chi-square	3,067
DF	4
Significance level	P = 0,5467
Chi-square test for trend	
Chi-square (trend)	0,818
DF	1
Significance level	P = 0,3657

Codes X	P4
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	1	3	4	6		
0	5	2	1	1	1	10 (50,0%)	
1	4	1	4	1	0	10 (50,0%)	
	9	3	5	2	1	20	
	(45,0%)	(15,0%)	(25,0%)	(10,0%)	(5,0%)		

Chi-square	3,244
DF	4
Significance level	P = 0,5178

Chi-square test for trend	
Chi-square (trend)	0,033
DF	1
Significance level	P = 0,8564

Codes X	P5
Codes Y	treat
Select	time=1

				Codes X				
Codes Y	0	1	2	3	4	5	6	
0	3	1	0	0	2	4	0	10 (50,0%)
1	4	1	1	2	1	0	1	10 (50,0%)
	7	2	1	2	3	4	1	20
	(35,0%)	(10,0%)	(5,0%)	(10,0%)	(15,0%)	(20,0%)	(5,0%)	

Chi-square	8,476
DF	6
Significance level	P = 0,2052
Chi-square test for trer	ıd
Chi-square (trend)	1,078
DF	1
Significance level	P = 0,2992

Frequency table & Chi-square test

Codes X	P6
Codes Y	treat
Select	time=1

		Codes X					
Codes Y	0	1	2	3	4	5	
0	3	1	2	2	0	2	10 (50,0%)
1	6	0	1	1	2	0	10 (50,0%)
	9	1	3	3	2	2	20
	(45,0%)	(5,0%)	(15,0%)	(15,0%)	(10,0%)	(10,0%)	

Chi-square	6,667
DF	5
Significance level	P = 0,2466
Chi-square test for trend	
Chi-square (trend)	0,997
DF	1
Significance level	P = 0,3181

Codes X	P7
Codes Y	treat
Select	time=1

Codes X	
---------	--

Codes Y	0	1	2	3	4	5	6	
0	1	1	0	1	2	2	3	10 (50,0%)
1	2	1	1	2	1	3	0	10 (50,0%)
	3	2	1	3	3	5	3	20
	(15,0%)	(10,0%)	((15,0%)	(15,0%)	(25,0%)	(15,0%)	
			5,0%)					

Chi-square	5,200
DF	6
Significance level	P = 0,5184
Chi-square test for tree	nd
Chi-square (trend)	1,739
DF	1
Significance level	P = 0,1872

Codes X	p8
Codes Y	treat
Select	time=1

		Codes X						
Codes Y	0	1	2	3	4	5	6	
0	4	1	1	2	1	0	1	10 (50,0%)
1	3	0	3	1	2	1	0	10 (50,0%)
	7	1	4	3	3	1	1	20
	(35,0%)	(5,0%)	(20,0%)	(15,0%)	(15,0%)	(5,0%)	(5,0%)	

Chi-square	4,810
DF	6
Significance level	P = 0,5685
Chi-square test for trend	
Chi-square (trend)	0,131
DF	1
Significance level	P = 0.7179

Codes X	P9
Codes Y	treat
Select	time=1

		Codes X							
Codes Y	0	1	2	3	4	5			
0	4	1	0	2	1	2	10 (50,0%)		
1	6	0	2	1	1	0	10 (50,0%)		
	10	1	2	3	2	2	20		
	(50,0%)	(5,0%)	(10,0%)	(15,0%)	(10,0%)	(10,0%)			

Chi-square	5,733
DF	5
Significance level	P = 0,3330
Chi-square test for trend	
Chi-square (trend)	1,497

DF	1
Significance level	P = 0,2211

Codes X	P10
Codes Y	treat
Select	time=1

		Codes X						
Codes Y	0	1	2	3	4	5	6	
0	2	1	0	4	2	0	1	10 (50,0%)
1	0	0	2	1	3	3	1	10 (50,0%)
	2	1	2	5	5	3	2	20
	(10,0%)	(5,0%)	(10,0%)	(25,0%)	(25,0%)	(15,0%)	(10,0%)	

Chi-square	10,000
DF	6
Significance level	P = 0,1247
Chi-square test for trend	
Chi-square (trend)	2,989
DF	1
Significance level	P = 0,0839

14.2.9 Summenscore affektiver und physischer Symptome vor/nach Behandlung in der Kontroll- und Interventionsgruppe

Paired samples t-test

Sample 1	
Variable	ASUM_A
	ASUM A
Sample 2	
Variable	ASUM_B ASUM B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	20,4000	22,1000
95% CI for the mean	6,2078 to 34,5922	8,2679 to 35,9321
Variance	393,6000	373,8778
Standard deviation	19,8394	19,3359
Standard error of the mean	6,2738	6,1146

Mean difference	1,7000
Standard deviation	3,3015
95% CI	-0,6618 to 4,0618
Test statistic t	1,628

Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,1379

Sample 1	
Variable	ASUM_C ASUM C
Sample 2	
Variable	ASUM_A ASUM A

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	19,8000	20,4000
95% CI for the mean	13,2108 to 26,3892	6,2078 to 34,5922
Variance	84,8444	393,6000
Standard deviation	9,2111	19,8394
Standard error of the mean	2,9128	6,2738

Paired samples t-test

Mean difference	0,6000
Standard deviation	23,6887
95% CI	-16,3459 to 17,5459
Test statistic t	0,0801
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,9379

Paired samples t-test

Sample 1	
Variable	ASUM_C ASUM C
Sample 2	
Variable	ASUM_D ASUM D

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	19,8000	13,4000
95% CI for the mean	13,2108 to 26,3892	7,3375 to 19,4625
Variance	84,8444	71,8222
Standard deviation	9,2111	8,4748
Standard error of the mean	2,9128	2,6800

Mean difference	-6,4000
Standard deviation	7,7917
95% CI	-11,9739 to -0,8261
Test statistic t	-2,597
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,0289

Sample 1	
Variable	ASUM_D
	ASUM D
Sample 2	
Variable	ASUM_B
	ASUM B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	13,4000	22,1000
95% CI for the mean	7,3375 to 19,4625	8,2679 to 35,9321
Variance	71,8222	373,8778
Standard deviation	8,4748	19,3359
Standard error of the mean	2,6800	6,1146

Paired samples t-test

Mean difference	8,7000
Standard deviation	18,1845
95% CI	-4,3084 to 21,7084
Test statistic t	1,513
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,1646

Paired samples t-test

Sample 1	
Variable	PSUM_A PSUM A
Sample 2	
Variable	PSUM_B PSUM B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	24,5000	26,1000
95% CI for the mean	16,3002 to 32,6998	17,8092 to 34,3908
Variance	131,3889	134,3222
Standard deviation	11,4625	11,5897
Standard error of the mean	3,6248	3,6650

Paired samples t-test

Mean difference	1,6000
Standard deviation	5,1683
95% CI	-2,0972 to 5,2972
Test statistic t	0,979
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,3532

Sample 1	
Variable	PSUM_C

	PSUM C
Sample 2	
Variable	PSUM_A
	PSUM A

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	22,4000	24,5000
95% CI for the mean	18,0526 to 26,7474	16,3002 to 32,6998
Variance	36,9333	131,3889
Standard deviation	6,0773	11,4625
Standard error of the mean	1,9218	3,6248

Mean difference	2,1000
Standard deviation	12,2878
95% CI	-6,6901 to 10,8901
Test statistic t	0,540
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,6020

Paired samples t-test

Sample 1		
Variable	PSUM_C	
	PSUM C	
Sample 2		
Variable	PSUM_D	
	PSUM D	

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	22,4000	14,7000
95% CI for the mean	18,0526 to 26,7474	7,8880 to 21,5120
Variance	36,9333	90,6778
Standard deviation	6,0773	9,5225
Standard error of the mean	1,9218	3,0113

Paired samples t-test

Mean difference	-7,7000
Standard deviation	8,1247
95% CI	-13,5121 to -1,8879
Test statistic t	-2,997
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,0150

Sample 1	
Variable	PSUM_D PSUM D
Sample 2	

Variable	PSUM_B
	PSUM B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	14,7000	26,1000
95% CI for the mean	7,8880 to 21,5120	17,8092 to 34,3908
Variance	90,6778	134,3222
Standard deviation	9,5225	11,5897
Standard error of the mean	3,0113	3,6650

Mean difference	11,4000
Standard deviation	9,2880
95% CI	4,7558 to 18,0442
Test statistic t	3,881
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,0037

14.2.10 Rücken- und Uterus/Abdominalschmerz in der Interventionsgruppe

Wilcoxon test (paired samples)

Sample 1		
Variable	R1_C	
	R1 C	
Sample 2 Variable		
Variable	R1_D	
	R1 D	

	Sample 1	Sample 2
Sample size	10	10
Lowest value	0,0000	<u>0,0000</u>
Highest value	<u>79,0000</u>	<u>76,0000</u>
Median	52,5000	31,5000
95% CI for the median	3,3249 to 75,5750	0,4750 to 51,6250
Interquartile range	7,0000 to 74,0000	1,0000 to 49,0000

Wilcoxon test (paired samples)

Number of positive differences	1
Number of negative differences	7
Smaller total of ranks	2,00
Two-tailed probability	P = 0,0234

Sample 1		
Variable	R2_C R2 C	
Sample 2		

	Variable	R2_D R2 D
- 1		

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	29,8000	12,5000
95% CI for the mean	10,3291 to 49,2709	0,5714 to 24,4286
Variance	740,8444	278,0556
Standard deviation	27,2185	16,6750
Standard error of the mean	8,6072	5,2731

Mean difference	-17,3000
Standard deviation	21,7871
95% CI	-32,8856 to -1,7144
Test statistic t	-2,511
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,0333

Wilcoxon test (paired samples)

Sample 1	
Variable	R3_C R3 C
Sample 2	
Variable	R3_D R3 D

	Sample 1	Sample 2
Sample size	10	10
Lowest value	0,0000	<u>0,0000</u>
Highest value	<u>45,0000</u>	<u>8,0000</u>
Median	3,5000	0,0000
95% CI for the median	0,0000 to 25,0252	0,0000 to 1,5750
Interquartile range	0,0000 to 14,0000	0,0000 to 0,0000

Wilcoxon test (paired samples)

Number of positive differences	0
Number of negative differences	5
Smaller total of ranks	0,00
Two-tailed probability	P = 0,0625

Sample 1		
Variable	U1_C	
	U1 C	
Sample 2		
Variable	U1_D	
	U1 D	

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	52,8000	34,1000

95% CI for the mean	32,6320 to 72,9680	17,9399 to 50,2601
Variance	794,8444	510,3222
Standard deviation	28,1930	22,5903
Standard error of the mean	8,9154	7,1437

Mean difference	-18,7000
Standard deviation	12,4280
95% CI	-27,5905 to -9,8095
Test statistic t	-4,758
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,0010

Paired samples t-test

Sample 1	
Variable	U2_C U2 C
Sample 2	
Variable	U2_D U2 D

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	37,9000	18,8000
95% CI for the mean	23,4802 to 52,3198	4,2337 to 33,3663
Variance	406,3222	414,6222
Standard deviation	20,1574	20,3623
Standard error of the mean	6,3743	6,4391

Paired samples t-test

Mean difference	-19,1000
Standard deviation	22,3877
95% CI	-35,1152 to -3,0848
Test statistic t	-2,698
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,0245

Wilcoxon test (paired samples)

Sample 1		
Variable	U3_C	
	U3 C	
Sample 2		
Variable	U3_D	
	U3 D	

	Sample 1	Sample 2
Sample size	10	10
Lowest value	<u>0,0000</u>	<u>0,0000</u>
Highest value	23,0000	<u>7,0000</u>
Median	0,0000	0,0000
95% CI for the median	0,0000 to 11,1000	0,0000 to 5,1000

Interquartile range	0,0000 to 9,0000	0,0000 to 3,0000
interquartile range	0,0000 to 9,0000	0,0000 to 3,0000

Wilcoxon test (paired samples)

Number of positive differences	0
Number of negative differences	4
Smaller total of ranks	0,00
Two-tailed probability	P = 0,1250

14.2.11 Rücken- und Uterus/Abdominalschmerz in der Kontrollgruppe

Wilcoxon test (paired samples)

Sample 1	
Variable	R1_A
	R1 A
Sample 2 Variable	
Variable	R1_B
	R1 B

	Sample 1	Sample 2
Sample size	10	10
Lowest value	<u>16,0000</u>	<u>11,0000</u>
Highest value	<u>89,0000</u>	<u>88,0000</u>
Median	74,0000	74,0000
95% CI for the median	42,2746 to 84,5250	31,4246 to 84,5750
Interquartile range	68,0000 to 84,0000	54,0000 to 83,0000

Wilcoxon test (paired samples)

Number of positive differences	4
Number of negative differences	6
Smaller total of ranks	22,50
Two-tailed probability	P = 0,6250

Sample 1	
Variable	R2_A R2 A
Sample 2 Variable	
Variable	R2_B R2 B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	50,2000	50,2000
95% CI for the mean	31,2081 to 69,1919	30,4162 to 69,9838
Variance	704,8444	764,8444
Standard deviation	26,5489	27,6558
Standard error of the mean	8,3955	8,7455

Mean difference	0,0000
Standard deviation	15,3333
95% CI	-10,9688 to 10,9688
Test statistic t	0,000
Degrees of Freedom (DF)	9
Two-tailed probability	P = 1,0000

Wilcoxon test (paired samples)

Sample 1	
Variable	R3_A R3 A
Sample 2	
Variable	R3_B R3 B

	Sample 1	Sample 2
Sample size	10	10
Lowest value	<u>0,0000</u>	<u>0,0000</u>
Highest value	<u>73,0000</u>	<u>79,0000</u>
Median	16,0000	17,0000
95% CI for the median	8,3750 to 47,7751	14,9500 to 51,2501
Interquartile range	11,0000 to 42,0000	16,0000 to 46,0000

Wilcoxon test (paired samples)

Number of positive differences	6
Number of negative differences	1
Smaller total of ranks	5,00
Two-tailed probability	P = 0,1562

Paired samples t-test

Sample 1	
Variable U1A	
Sample 2	
Variable	U1B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	84,3000	78,2000
95% CI for the mean	75,6166 to 92,9834	69,4986 to 86,9014
Variance	147,3444	147,9556
Standard deviation	12,1386	12,1637
Standard error of the mean	3,8385	3,8465

Mean difference	-6,1000
Standard deviation	14,8208
95% CI	-16,7021 to 4,5021
Test statistic t	-1,302
Degrees of Freedom (DF)	9

Two-tailed probability	P = 0,2254

Sample 1	
Variable	U2_A U2 A
Sample 2 Variable	
Variable	U2_B U2 B

	Sample 1	Sample 2
Sample size	10	10
Arithmetic mean	68,2000	59,4000
95% CI for the mean	50,9231 to 85,4769	41,9353 to 76,8647
Variance	583,2889	596,0444
Standard deviation	24,1514	24,4140
Standard error of the mean	7,6373	7,7204

Paired samples t-test

Mean difference	-8,8000
Standard deviation	20,2583
95% CI	-23,2919 to 5,6919
Test statistic t	-1,374
Degrees of Freedom (DF)	9
Two-tailed probability	P = 0,2028

Wilcoxon test (paired samples)

Sample 1	
Variable	U3_A U3 A
Sample 2	
Variable	U3_B U3 B

	Sample 1	Sample 2
Sample size	10	10
Lowest value	0,0000	<u>0,0000</u>
Highest value	<u>74,0000</u>	<u>70,0000</u>
Median	28,0000	32,0000
95% CI for the median	8,3750 to 67,1000	14,3750 to 63,3001
Interquartile range	11,0000 to 65,0000	17,0000 to 57,0000

Wilcoxon test (paired samples)

Number of positive differences	6
Number of negative differences	2
Smaller total of ranks	12,00
Two-tailed probability	P = 0,4609

15 English edited version

Does an intervention at the cranial base have an influence on premenstrual syndrome?

15.1 Introduction

Premenstrual syndrome (PMS) is listed in the *ICD-10 Code* of the WHO (*International Statistical Classification of Diseases and Related Health Problems*) under item N94.3 and refers to physical and affective complaints which occur exclusively in the luteal phase¹³² of the menstrual cycle. About 80% of the women are affected by it¹³³. PMS is linked with the following identifiable dysfunctions or limitations¹³⁴:

Affective symptoms	Physical symptoms
Depressed mood/feeling sad or blue	Breast tenderness
Anger outbursts	Abdominal bloating
Irritability	Headaches
Anxiety	Swelling of extremities
Lack of interest in usual activities or social withdrawal	Joint or muscle pain or back pain
Confusion	Sleep disturbances
Not in control	Cramps or abdominal pain
Restlessness	Weight gain
Hopelessness	Skin disorders
Tension	Changes in appetite
Mood swings	
Lack of energy or lethargy or fatigue	
Difficulty concentrating	

The exact causes of premenstrual syndrome are not clear yet. A dysfunction of the hypothalamic-pituitary-ovary axis (HPO-axis) and its effect on the pituitary

¹³² THANGARATINAM ET AL 2006

¹³³ CLAYTON ET AL 2006

¹³⁴ DENNERSTEIN 2010

hormones estrogen and progesterone is considered as one of the possible causes¹³⁵, which has an influence on the neurotransmitter function of dopamine and serotonin within the central nervous system¹³⁶.

Women suffering from PMS often have an increased estrogen concentration which increases to a level of 10-times of its normal level at the beginning of the menstrual cycle. At the same time the progesterone concentration drops¹³⁷. This has the effect of a reduced availability of serotonin which is associated with symptoms like depression, irritability or aggression¹³⁸.

The pelvic pain and cramp-like contractions of the uterus has been demonstrated to be mediated through the action of prostaglandin and are ischemic in nature¹³⁹. Due to its vaso-constrictive function a raised vasopressin level can also play a role in the context of increased uterine contractions and ischemic pain¹⁴⁰ ¹⁴¹.

The organ of control in the endocrine system is the pituitary gland which forms a functional unit with the hypothalamus and other areas of the central nervous system¹⁴².

From an osteopathic point of view the cranial base (sphenobasilar synchondrosis/SBS), in which the pituitary gland is embedded, is of great importance. The precondition for a good functioning of the pituitary gland is a good position in the sella turcica of the cranial base and a well-functioning primary respiratory mechanism (PRM) of the cranial base which should be palpable in the head and in the rest of the body¹⁴³.

Previous papers about PMS¹⁴⁴ ¹⁴⁵ do not go much into detail about the treatment of the cranial base with a cranial approach. The author of this paper hopes to be able

136 SPINELLI 2005

¹³⁵ CAMPAGNE 2007

¹³⁷ Žuкov 2010

¹³⁸ PRITHAM 2002

¹³⁹ NASIR 2004

¹⁴⁰ FRENCH 2005

¹⁴¹ Brühwiler 2006

¹⁴² KLINKE ET AL 2005

¹⁴³ LIEM 2005

¹⁴⁴ RIEPLER-REISECKER 2006

¹⁴⁵ HEIM 2007

to influence the SBS though such an intervention and thus to re-establish a good function of the pituitary and the HPO-axis so that the associated hormonal system can fulfill its task without any disturbances.

15.2 Methodology

The present study involved a patient sample of 20 women aged between 18 and 45 years with a regular menstrual cycle suffering from PMS and/or pain during their period. They all underwent a preliminary gynecological examination to exclude the following criteria, which might have an influence on the study results:

- Organic diseases of the uterus
- Endometriosis
- Pregnancy
- Hormonal contraception
- Hormone replacement therapy
- Pituitary adenoma

As a result of a randomization procedure the test persons were divided into two groups.

After completing a questionnaire about their complaints shortly before their period and indicating their pain during the first three days of their period on a visual analog scale, the women received either a treatment with cranial techniques or a sham treatment. The sham treatment was carried out by a colleague who does not have any knowledge or skills regarding cranial techniques.

After the questionnaires and visual analog scales have been filled in again shortly before and during the following period, the collected data were analyzed.

The questionnaire used for data collection was the *23-Item Checklist* by DENNERSTEIN¹⁴⁶, which is best suited for evaluating the most common symptoms linked with PMS and is usually used in treatment studies about PMS.

The treatments of the cranial base were carried out in the phase where the patients did not describe any complaints, i.e. between days 7 and 14 of the menstrual cycle.

-

¹⁴⁶ Dennerstein 2010

BARRAL¹⁴⁷ considers visceral treatments in the context of premenstrual problems most appropriate in the first week after the period. Regarding a cranial treatment no recommendations are available.

For the treatment the practitioner's hands were placed in the position for an occipito-shenoidal palpation according to J.E. UPLEDGER¹⁴⁸, with which the author is very familiar.

The treatment lasted between ten and fifteen minutes; it was considered as concluded once the bones forming the cranial base expressed a rhythmical, symmetric and strong PRM.

It has to be pointed out that the cranial treatment involves interventions according to a specific osteopathic model and that we only suppose that we are able to have an influence on the cranial base through this treatment approach.

15.3 Results

The distribution of the metric data (pain questionnaire of day 1 - day 3) was checked (cf. Annex 14.2.2) and the appropriate parametric (unpaired or paired *t-test*) or parameter-free tests (*Mann Whitney U Test* or *Wilcoxon test*) were applied to evaluate the differences between the treated and untreated patients and the differences before and after the treatments. Frequencies were statistically evaluated by means of the *chi square test* between the two groups.

The statistical analyses were carried out with the aid of Medcalc 11.5 (www.medcalc.org). A p value of <0.05 was defined as the level of statistical significance. All results (independent of the distribution) were presented as mean values \pm standard deviation (MV \pm STD) or as quantities and percentage values.

A total of 20 female patients with an average age of 36.0 ± 4.6 years were included in the study and divided into one group receiving a treatment with cranial techniques (intervention group, INV, n=10) and one group with a sham treatment (control group, CON, n=10) through a randomization procedure.

_

¹⁴⁷ BARRAL 2004

¹⁴⁸ LIEM 2005, 407

At the first time of measurement (cf. Annex 14.2.3) the two groups did not show a significant statistical difference regarding their age, duration of menstrual cycle, intensity and duration of their period as well as frequency of pain and pain medication – neither before nor after the treatment (cf. Annex 14.2.4). In addition, the treatment did not produce a significant difference (cf. Annex 14.2.5 and 14.2.6) in the intervention or the control group.

Three-fourth of all women (n=15) took one or several painkillers to sooth their complaints during their period. The dosage of the medication was not altered by the patients during the study period. However, one patient in the intervention group, who took 200mg Mexalen, did no longer need painkillers after the treatment. The duration of the drug-based therapy for the menstruation complaints was not influenced through the treatment in both groups. Nevertheless, the statistical analysis showed that the intervention group and the control group differed significantly in this aspect both before and after the treatment (cf. Annex 14.2.7).

Regarding the affective and physical symptoms that were evaluated by means of the questionnaires no significant (p=>0.05) changes of the individual symptoms could be observed between the intervention group and the control group as well as before and after treatment. The incidence of the individual symptoms is thus only listed for the measurement before the treatment (Table 1 and Annex 14.2.8).

Table 1a-1b: Affective and physical symptoms before the treatment in the intervention group (INV) and control group (CON).

Table 1a: Affective symptoms

The figures indicated are absolute values, p=n.s. *chi* square test

Affective symptoms	INV	CON
Depression	4	3
Anger outbursts	6	6
Irritability	10	6
Anxiety	2	1
Lack of interest	5	6
Confusion	2	2
Not in control	10	7

Affective symptoms	INV	CON
Restlessness	5	5
Hopelessness	0	0
Tension	8	6
Mood swings	9	8
Lack of energy	9	6
Difficulty concentrating	1	2

Table 1b: Physical symptoms

The figures indicated are absolute values, p=n.s. *chi* square test

Physical symptoms	INV	CON
Breast tenderness	8	7
Abdominal bloating	9	9
Headaches	2	3
Swelling of extremities	6	5
Joint or muscle pain or back pain	6	7
Sleep disturbances	4	7
Cramps or abdominal pain	8	9
Weight gain	7	6
Skin disorders	4	6
Changes in appetite	10	8

Nevertheless, a significant reduction of the sum-scores of the affective and physical symptoms could be observed in the intervention group (Table 2 and Annex 14.2.9).

Table 2: Sum of affective and physical symptoms before (pre) and after (post) the treatment in the intervention group (INV) and control group (CON).

Values are mean values ± standard deviation

* p<0.05 paired t-test pre vs. post, *p=0.004 unpaired t-test CON vs. INV (post)

Items	INV	CON
pre		
Sum of affective symptoms	19.8 ± 9.2	20.4 ± 19.8
Sum of physical symptoms	22.4 ± 6.1	24.5 ± 11.5

Items	INV	CON
post		
Sum of affective symptoms	13.4 ± 8.4 *	22.1 ± 19.3
Sum of physical symptoms	14.7 ± 9.5 *	26.1 ± 11.6 *

Back pain and cramp-like pain in the regions of the uterus/abdomen were assessed by means of a visual analog scale over the period of three days starting with the first day of the women's menstrual period.

In the intervention group (cf. Annex 14.2.10) the pain in the regions of the back (Fig. 3a) and uterus/abdomen (Fig. 3c) could be improved significantly over the first two days.

In the control group (cf. Annex 14.2.11) the values for the pain in the regions of the back (Fig. 3b) and uterus/abdomen (Fig. 3d) before and after the treatment did not differ significantly.

Figure 3a-3d: Back (R) and uterus/abdomen (U) of the evaluated women before (white) and after (black) the treatment.

Figure 3a: Back pain over a period of three days in the intervention group.

Values are represented as mean values \pm 1 SEM (standard error of the mean), p paired t-test (pre vs. post).

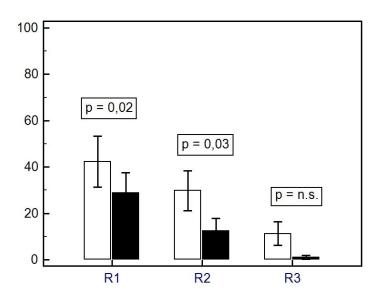
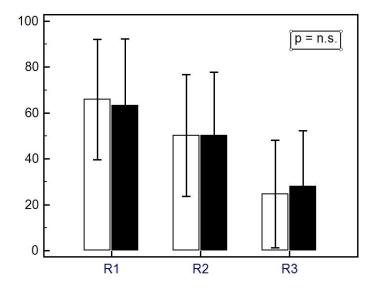



Figure 3b: Back pain over a period of three days in the control group.

Values are represented as mean values ± 1 SEM, p paired t-test (pre vs. post).

Figure 3c: Uterus/abdominal pain over a period of three days in the intervention group.

Values are represented as mean values ± 1 SEM, p paired t-test (pre vs. post).

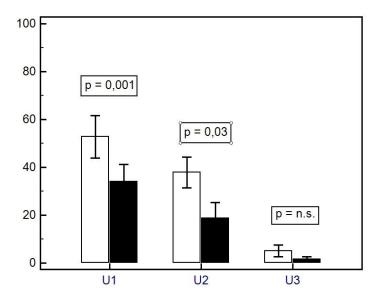
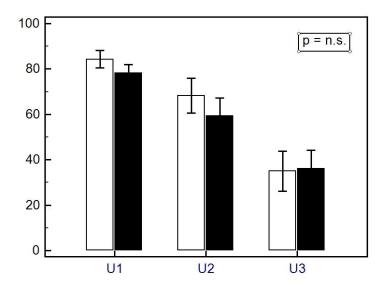



Figure 3d: Uterus pain over a period of three days in the control group.

Values are represented as mean values ± 1 SEM, *p paired t-test* (pre vs. post).

15.4 Discussion

The hypothesis whether an intervention in the region of the cranial base by means of cranial techniques can have an influence on the pituitary gland which forms part of the HPO-axis and thus lead to a reduction of premenstrual problems could be confirmed.

Regarding the individual symptoms no significant change could be observed. However, if the symptoms are summarized in groups a significant improvement could be detected.

It was positive that the pain in the regions of the back and uterus/abdomen decreased after the treatment. However, despite the significant reduction of the pain the dosage and duration of the painkiller intake of the test persons did not change. A possible explanation for this could be that it simply has become a habit of the patients to take those painkillers.

The results of this study are representative of women with menstrual pain. However, results pertaining to the success of therapy in the long-term could not be determined. Further studies involving a larger patient sample and a greater number of treatments would be necessary for that.

The results do suggest an effect that cranial techniques have on the hormone system and the reduction of pre-menstrual pain complaints. At the end of the day, however, it remains unclear whether the hormonal system was really influenced. At least, a temporary improvement could be achieved.

To substantiate the effectiveness of osteopathic treatments by scientific means it is necessary to carry out clinical studies. However, in particular the use of cranio-sacral techniques in the context of clinical studies is difficult and hard to prove scientifically. Many treatment techniques of the osteopathic cranio-sacral model are based on the assumption that the practitioner is able to palpate subtle movements of the cranial base and to induce certain changes in the structure of the cranial base.

The fact is that we do not know whether an osteopathic approach like the craniosacral therapy can actually have an effect on the cranial base and thus it is necessary to be careful and critical regarding the interpretation of its effectiveness. At the end of the day, its effectiveness remains speculative.

15.5 Bibliography

- BARRAL J.P.: Viszerale Osteopathie in der Gynäkologie. Urogenitale Manipulation. Elsevier 2004.
- BRÜHWILER H./SIEGER D./LÜSCHER K.: Primäre Dysmennorrhoe. Schweiz Med Forum (2006) 6: 919–922.
- CAMPAGNE D.M.: The premenstrual syndrome revisited. European Journal of Obstetrics & Gynecology and reproductive Biology 130 (2007) 4-17.
- CLAYTON/KELLER/LESLIE/EVANS: Exploratory study of premenstrual symptoms. Arch Womans Ment Health 2006.
- Dennerstein L.: The effect of premenstrual symptoms on activities of daily life.

 American Society for Reproductive Medicine Vol 94 (3) 2010.
- FRENCH L.: Dysmenorrhea. Am Fam Physician 2005, Jan15; 71(2):285-291.

- HEIM S.: Does Osteopathic Treatment influence the Hormone level of hyperandrogaenemic infertile women? Masterthesis 2007.
- KLINKE R./PAPE HC./SILBERNAGL ST.: Physiologie. Thieme Verlag 2005.
- LIEM T.: Kraniosakrale Osteopathie. Hippokrates Verlag 2005.
- NASIR L.: Management of pelvic pain from Dysmenorrhea or Endometriosis. J Am Board Fam Pract 2004, 17:43–7.
- PRITHAM U.: Managing PMS&PMDD. Exploring new treatment options. Awhonn Lifelines Vol 6, 5, 2002.
- RIEPLER-REISECKER I.: Influence of osteopathic treatment on congestive menstrual disorders and premenstrual syndrome. Masterthesis 2006.
- SPINELLI M.: Neuroendocrine effects on mood. Reviews in Endocrine & Metabolic Disorders 2005; 6: 109-115.
- THANGARATINAM S./ISMAIL K./O'BRIAN S.: Evidence-based management of premenstrual syndrome. Eur Clinics Obstet Gynaecol (2006) 2: 65–71.
- ŽUKOV I.: Premenstrual Dysphoric Disorder–Review of actual findings about mental disorders related to menstrual cycle and possibilities of their therapy. Prague Medical Report Vol. 111 (2010) 1, 12–24.