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ABSTRACT 

Metabolic syndrome (MetS) is a clustering of risk factors for cardiovascular disease 

(CVD) and type 2 diabetes (T2D) – two major causes of morbidity and mortality 

worldwide.  Heart rate variability (HRV) is a non-invasive measure of cardiac 

autonomic regulation that predicts mortality and morbidity.  Additionally, HRV is 

reduced in CVD, T2D and MetS.  As such, HRV has potential to be a novel 

cardiometabolic risk factor to be included in clinical risk assessment.  Therefore, the 

purpose of this thesis was to examine the relationships between MetS and HRV.  A 

systematic review of cross-sectional studies examining relationships between HRV and 

MetS was completed to consolidate existing evidence and to guide future studies.  This 

was followed by a cross-sectional investigation of time and frequency domain and 

nonlinear HRV in a population with MetS risk factors to determine which MetS risk 

factors were associated with HRV parameters.  A pilot study was then conducted to 

study the feasibility of conducting a mobile health (mHealth) and exercise intervention 

in a rural population, which was followed by a 24-week randomized clinical trial to 

examine the effects of the interactive mHealth exercise intervention compared to 

standard of care exercise in participants with MetS risk factors.  Overall, HRV was 

reduced in women with MetS compared to those without, though there were no 

differences in men.  Waist circumference and lipid profiles were most commonly related 

to HRV parameters when studied cross-sectionally.  The changes in waist circumference 

and fasting plasma glucose were associated with the change in HRV parameters when 

studied longitudinally.  Following the intervention period, waist circumference and 
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blood pressure were improved with no other changes in MetS risk factors.  HRV 

parameters indicative of vagal activity were reduced over the intervention period, but 

there were no changes in other HRV parameters.  There were no differences in changes 

between the intervention and control groups.  In conclusion, MetS and HRV are 

associated in women but not men.  However, there were no clear associations between 

MetS and HRV to suggest that HRV would be a valuable clinical risk indicator.  

 

Keywords: 

Heart rate variability; autonomic nervous system; metabolic syndrome; mobile health; 

physical activity prescription; cardiovascular risk. 
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CHAPTER 1  

Review of the Literature 

1.1 Burden of Cardiovascular Disease and Type 2 Diabetes 

Cardiovascular diseases (CVD) are the leading cause of death world-wide accounting for 

48% of mortality from non-communicable diseases [1].  Additionally, CVDs are 

responsible for a significant proportion of morbidity accounting for 10% of global disease 

burden [1].  The Public Health Agency of Canada estimated the cost of CVD in Canada 

as $22.2 billion in 2000, with $7.6 billion in direct health care costs and $14.6 billion in 

indirect costs, including lost economic productivity [2].   

Type 2 diabetes mellitus (T2D) is an independent risk factor for CVD and cardiovascular 

complications are common in this patient population.  Complications range from 

microvascular disease including retinopathy to macrovascular disease including coronary 

heart disease and stroke.  In 2004, heart disease was responsible for 68% and stroke was 

responsible for 16% of all deaths in patients diagnosed with T2D in the United States [3].  

In 2009, annual diabetes-related spending was $113 billion in the United States, and this 

is expected to increase to $336 billion in 2034 [4].  With an increasingly aging and 

overweight population, the incidence and thus costs associated with CVD and T2D are 

expected to increase.  Strategies for cost effective management of cardiovascular risk 

factors to prevent or delay disease progression and reduce disease burden are needed. 

1.2  Cardiometabolic Risk 

The Canadian Cardiometabolic Risk Working Group defines cardiometabolic risk as any 

factor that increases the risk of cardiovascular morbidity and mortality [5].  Three 
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primary categories of cardiometabolic risk are: 1) Global cardiometabolic risk, which 

encompasses all novel and emerging risk factors along with the traditional factors; 2) 

Metabolic syndrome (MetS), which is a specific set of risk factors that, in combination 

increase the relative risk of developing CVD and T2D; and 3) Traditional risk scores, 

such as the Framingham Risk Score, which use validated mathematical algorithms to 

calculate an absolute cardiovascular risk [5].  The following section will discuss what 

MetS is and how it can be used in combination with absolute risk scores to classify risk.  

Importantly, heart rate variability (HRV) will be discussed including methodological 

details, physiological background, and potential as an emerging, novel cardiometabolic 

risk factor.  

1.2.1 Metabolic Syndrome 

Cardiovascular risk factors tend to cluster in a given individual.  In 1988, Reaven 

described what he termed “Syndrome X” – a combination of insulin resistance, 

hyperglycaemia, hypertension, reduced high density lipoprotein cholesterol (HDL) and 

increased low density lipoprotein cholesterol (LDL) [6].  The importance of considering 

the increased risk of developing CVD and T2D in individuals with clustering of these risk 

factors was recognized.  Since that time, Syndrome X has been re-named MetS, and the 

risk factors have been modified.  There are a number of MetS definitions, all with slightly 

different criteria.  The National Cholesterol Education Program – Adult Treatment Panel 

III (ATPIII) guidelines are most widely used criteria as they are more focused on all-

round CVD risk.  Diagnosis requires the presence of three of the following five risk 

factors in an individual: increased waist circumference (WC), blood pressure (BP), 

fasting plasma glucose (FPG) and triglycerides (TG) and reduced HDL, all of which are 
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readily measured in clinic settings [7].  MetS increases the five-year risk of developing 

CVD two-fold, and the lifetime risk of developing T2D five-fold [8]. 

The Canadian Cardiometabolic Risk Working Group emphasizes that MetS is a relative 

risk indicator and therefore, its importance will vary based on absolute cardiovascular 

risk [5].  They suggest that consideration of MetS status along with an absolute risk score 

may be ideal for clinical risk profiling.  As a relative risk indicator, the presence of MetS 

would approximately double an absolute cardiovascular risk score.  For example, an 

individual with a Framingham Risk Score of 2% with MetS would only have a combined 

ten year risk of developing CVD of 4%, while an individual with a Framingham Risk 

Score of 20% with MetS could be considered to have an actual risk of 40% [5].  

Longitudinal studies are needed to determine the precise algorithm for the relative risk 

calculation, but the hypothetical scenario presented by the working group demonstrates 

that MetS may be particularly dangerous to individuals with high absolute risk scores.   

1.2.2 Heart Rate Variability 

Control of the heart is complex with input from many systems, including the nervous 

system.  The autonomic nervous system has two main branches: 1) The parasympathetic 

nervous system, which is responsible for slowing heart rate (HR) and reducing 

myocardial contractility; and 2) The sympathetic nervous system, which speeds HR and 

increases myocardial contractility.  Proper cardiac control is reliant on the proper 

function of and balance between these two branches of the autonomic nervous system.  

Heart rate variability (HRV) is a non-invasive indicator of cardiac autonomic function 

with important prognostic value.  Measurement involves collection of consecutive R-R 
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intervals (RRI) from an electrocardiogram (ECG) or HR monitor.  Commonly, either 

long-term recordings of 24 hours or short-term recordings of five minutes duration are 

analysed.  Since overall variability is dependent upon the length of the recording, HRV 

should only be compared within or between individuals if the same length of data was 

analysed [9].   It is necessary to remove non-sinus rhythm beats, such as premature 

ventricular contractions, before analysis.  A number of different mathematical analyses 

may be carried out to calculate HRV.   

Time domain analysis 

Time domain analysis is commonly used due to the relative ease of calculation and 

because stationary data is not required.  Therefore, it can be used to analyse 24 hour data.  

Primary time domain indices are the standard deviation of normal-to-normal intervals 

(SDNN), root mean square of successive differences (RMSSD) and the percentage of 

normal-to-normal intervals greater than 50 ms (pNN50).  Administration of low-dose 

scopolamine to enhance parasympathetic cardiac outflow increased SDNN 23%, RMSSD 

49% and pNN50 78%, suggesting significant contribution of vagal activity to each HRV 

parameter, and substantial contribution to RMSSD and pNN50 [10].  SDNN is an index 

of total cardiac variability over the recording period, while RMSSD and pNN50 measure 

short-term variation and are reflective of parasympathetically mediated processes [9].  

However, RMSSD is used preferentially over pNN50, as the mathematical algorithm is 

more robust [9]. 

Frequency domain analysis 
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Frequency domain analysis has been used extensively in research.  The RRI time series is 

decomposed into underlying frequencies using Fast Fourier Transform or Autoregressive 

modeling.  Each frequency band is classically considered to represent physiological 

processes, though there is much debate around this issue.  Signal stationarity is essential 

for valid calculation, so short-term recordings are most applicable, though data can be 

separated into equal length epochs (i.e. one hour) and averaged for the 24-hour collection 

period.  The power spectrum is composed of four power frequency bands: ultra low 

(ULF; 0-0.003Hz), very low (VLF; 0.003-0.04Hz), low (LF; 0.04-0.15Hz) and high 

frequency power (HF; 0.15-0.4Hz).  Total power (TP) is often calculated as well, as are 

both LF and HF in normalized units [LFnu = LF/(LF+HF); HFnu = HF/(LF+HF)] and 

LF/HF. 

The physiological backgrounds of the ULF and VLF bands are not as well studied as 

other measures.  Serrador and colleagues [11] showed that ULF was reduced during an 

approximately three-hour session of inactivity (i.e. sitting and reading) compared to a day 

of typical daily activity (i.e. activities of daily living, not exercise).  Since ULF was 

strongly correlated to the quantity of muscle activity, authors suggested that ULF may be 

related to mechanisms associated with modulation of energy expenditure [11].  

Generally, ULF is interpreted to be reflective of thermoregulation or hormonal systems.  

Bernardi and researchers [12] showed that rhythmic or spontaneous physical activity 

increased VLF power three- to five-fold compared to rest, suggesting that some aspects 

of energy expenditure may be represented in VLF as well.  There is also evidence to 

support some contribution of the renin-angiotensin system to VLF power, but enalaprilat 

administration to block angiotensin converting enzyme only modestly increased VLF 
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power by 21% [13].  However, atropine administration to abolish vagal outflow reduced 

VLF power 92% in healthy young adults, suggesting parasympathetic influence is the 

primary physiological component of the VLF band [13]. 

Early studies concluded that LF was an index of sympathetic activity [14], but many 

studies since have proved otherwise.  Cardiac noradrenaline spillover, the gold standard 

measurement of cardiac sympathetic outflow, was not correlated with LF power [15,16] 

and cardiac β-adrenergic stimulation decreased LF, rather than increased as would be 

expected [17].  Additionally, in conditions known to increase sympathetic outflow, such 

as congestive heart failure [18,19] and aging [20,21], LF is decreased.  In fact, age is the 

major determinant of LF oscillations at rest, with reduced LF associated with advancing 

age [22].  Additionally, in patients with pulmonary hypertension, LF power is negatively 

associated with muscle sympathetic nerve activity [23].  Exercise is a powerful 

sympathetic stimulation and LF was decreased during a bout of incremental exercise 

[24].  On the other hand, LF was reduced in response to atropine, a cholinergic blockade, 

suggesting parasympathetic influence [13].  There is some evidence to support an 

association between LF power of HRV and baroreflex function – one of the reflex control 

mechanisms for autonomic cardiac modulation.  LF power and baroreflex sensitivity 

were positively correlated [16,25] and LF was increased in participants with normal 

baroreflex function in response to baroreflex stimulation, but not in those with impaired 

baroreflex sensitivity [26].  These findings provide a basis for future investigations, but 

are not conclusive.  To date, the physiological meaning of the LF power band of HRV 

remains controversial. 
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Resting HF is classically considered to be mediated by respiratory sinus arrhythmia when 

breathing is greater than 0.15Hz, or about nine breaths per minute [9].  HF is often 

thought to quantify vagal tone since HF power of HRV is nearly completely abolished by 

parasympathetic blockade with atropine [27,28] or glycopyrolate [29,30].  However, an 

important distinction is that HF actually reflects the modulation of vagal tone, rather than 

the tonic level per se [31].  HF was reduced following both a parasympathetic blockade 

with atropine and parasympathetic withdrawal with nitroprusside; despite similar levels 

of absolute parasympathetic tone in both conditions, HF was lower during the 

parasympathetic blockade than during parasympathetic withdrawal [31].  Similarly, 

incremental doses of vagotonic atropine to increase parasympathetic tone were not 

correlated to HF or other HRV indices [32].  Research supports modulation of vagal tone 

as the primary underlying physiological process represented by the HF band.  

Nonlinear analysis 

Nonlinear analyses differ from time and frequency domain analysis as rather than 

quantifying the amount of variability they examine heart rate qualities such as fractal 

characteristics and complexity.  Detrended fluctuation analysis quantifies the fractal-like 

properties of the tachogram [33].  RRI fluctuations are calculated in windows and a log-

log curve is plotted.  The slope of the first arm of the curve defines the short-term scaling 

exponent (α1: from 4-11 beats).  When α1 is equal to one, RRI fluctuations are exhibiting 

fractal-like behaviour [34,35].  Fractal breakdown can occur with either excessive order 

(α1 = 1.5) or uncorrelated randomness (α1 = 0.5) [34].  Pharmacologic vagal blockade 

with glycopyrolate increased α1 from a value indicative of fractal like behaviour towards 

uniformity [36].  In response to physiological stimuli, α1 was increased with exercise, 
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head up tilt greater than 20 degrees [37] and cold hand immersion [35], all of which 

reciprocally increase sympathetic and reduce parasympathetic activity.  Cold face 

immersion, which co-activates sympathetic and parasympathetic outflow, resulted in 

breakdown of fractal-like behaviour demonstrated by increased α1 in all subjects [35].  In 

contrast to these studies, Tan and associates [38] reported no changes in α1 following 

total autonomic blockade or during tilt.  However, baseline values of α1 were lower in 

this study than others and authors reported that participants did not demonstrate fractal 

patterns at rest.  This group also showed that α1 was not reproducible within individuals 

[38].  Thus, the physiological background of α1 remains unclear.  Considering solely 

autonomic function may be too simplistic as fractal behaviour likely results from the 

complex interplay of all mechanisms of cardiac control. 

Poincaré Plots 

Poincaré plots are often considered nonlinear since the visual appearance of the 

scattergrams may be interpreted, but statistical algorithms can also be applied to quantify 

plots.  To construct the Poincaré plot, each RRI is plotted against the preceding RRI.  The 

width (SD1) and length (SD2) of the scattergram can be calculated.  SD1 was reduced 

with atropine and increased with scopolamine [39] and is considered a measure of short-

term variability, primarily of parasympathetic origin, while SD2 is a measure of total 

variability [40,41].  Since stationarity is not required, SD1 may be used in place of HF to 

quantify the vagal component during a dynamic stimulus, such as exercise. 

Summary of the physiological background of heart rate variability 
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In summary, modulation of the parasympathetic outflow, rather than parasympathetic 

tone, appears to be the main contributor to time and frequency domain and Poincaré plot 

parameters.  The physiologic mechanisms related to nonlinear HR dynamics remain 

debatable, as do specific mechanisms associated with the lower frequency power bands.  

Since HRV represents complex physiological interactions, it is difficult to isolate specific 

mechanisms.  Physiological manoeuvres, such as tilt, to stimulate autonomic nervous 

responses also affect hormonal and other body systems.  Likewise, pharmacological 

agents to stimulate or block autonomic processes may have unintended systemic or local 

effects that may alter HRV.   

Although there are a number of limitations associated with HRV data processing and 

interpretation, it is used extensively in research and it has been suggested as a valuable 

clinical tool.  Since it is non-invasive and RRIs are easily collected, HRV is a useful tool 

for examining autonomic function in large population studies.  These characteristics give 

HRV the potential to be a useful clinical tool as a novel cardiometabolic risk indicator.  

The following section explores this potential in greater detail by discussing the prognostic 

value of HRV. 

Predictive value of heart rate variability 

A landmark study showed that post-myocardial infarction patients with reduced HRV 

(24h SDNN < 50 ms) had triple the risk of all-cause mortality compared to those with 

higher SDNN [42].  Similarly, post-myocardial infarction patients with 24h SDNN < 70 

ms had a 2-year mortality of 10% compared to 2% in patients with normal SDNN [43].  
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Reduced ULF and VLF components of frequency domain analysis have been linked to 

patient prognosis following myocardial infarction [44-46].   

Research has also examined the prognostic value of short-term HRV in general 

populations.  It has been reported that over a mean follow-up of 9.2 years, those who died 

had impaired autonomic function demonstrated by reduced SDNN, LF and HF, though 

there were no differences in LF/HF [47].  Importantly, HRV is reduced in T2D [48,49], a 

population with a high risk of CVD.  Furthermore, those presenting with autonomic 

impairment and T2D had approximately double the risk of mortality compared to those 

with autonomic impairment, but without T2D [47].  These studies suggest an interactive 

effect between traditional cardiovascular risk factors and autonomic function. 

A number of studies have examined associations between MetS or its component risk 

factors and HRV [50-64].  Generally, HRV is reduced in MetS compared to healthy 

populations and some MetS risk factors were associated with HRV parameters.  

However, these associations vary considerably based on the study population.  A critical 

examination and review of these findings is needed to synthesize results. 

More work is needed in this area to determine specific HRV thresholds for CV risk, as to 

date, they have been arbitrarily determined based on quartiles.  Assuming HRV 

parameters reflect different physiological processes, alteration of specific HRV 

parameters may indicate risk for specific disease processes.  Despite the need for more 

knowledge of the physiological background of HRV parameters, evidence to date 

supports the prognostic value of HRV, suggesting it may be a useful global 

cardiometabolic risk factor to be considered in risk profiles. 
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1.3 Risk Management 

An Archimedes model of the United States population showed that 78% of adults were 

candidates for CVD prevention activities, including aspirin administration, weight 

reduction and control of BP, FPG and lipids [65].  If everyone took part in the prevention 

activities for which they were candidates, incidence of myocardial infarction and stroke 

would be reduced by 63% and 31%, respectively [65].  Even when more feasible 

participation levels were considered, myocardial infarction and stroke could be reduced 

36% and 20%, respectively [65].  However, with the current modes of intervention 

delivery, the only cost-effective prevention activity was smoking cessation [65].  Thus, 

strategies are needed to develop cost-effective prevention programs targeting other 

important risk factors. 

Insufficient physical activity is the fourth leading risk factor for cardiovascular mortality, 

behind raised BP, tobacco use and raised FPG [1].  According to accelerometer data 85% 

of Canadians [66] and 90% of Americans [67] are not meeting recommended physical 

activity guidelines.  Greater cardiorespiratory fitness has been shown to provide a strong 

protective effect, attenuating the effects of MetS on all-cause and cardiovascular 

mortality in men [68].  Thus strategies for delivery of cost-effective interventions for 

increased physical activity, especially those aimed at increasing cardiorespiratory fitness, 

have the potential to substantially reduce CVD burden.  The next section discusses the 

efficacy of exercise training as a cardiometabolic risk modifier by examining effects on 

MetS and HRV. 

1.3.1 Exercise interventions in Metabolic Syndrome 
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Health behaviour modification, including increased physical activity to meet global 

guidelines [69], is recommended as a primary treatment strategy for cardiometabolic risk 

[5,8].  The effects of exercise on individual MetS risk factors have been reviewed 

extensively [5,70,71].  However, only one meta-analysis has examined the effects of 

exercise on MetS risk factors in studies on populations with MetS [72].  Of the studies 

included in the meta-analysis, training interventions were eight to 52 weeks duration, 

frequency of two to five sessions per week for 40-60 minutes per session at moderate to 

high intensity, with the exception of one study which examined low intensity exercise.  

Endurance exercise training reduced WC, SBP and DBP and increased HDL, with no 

changes in FPG or TG [72].  Authors suggested that the reduction in FPG may have 

reached statistical significance had baseline values been higher, but since only one study 

included individuals with T2D, FPG was relatively normal prior to exercise training [72].  

High intensity interval training resulted in greater improvements in FPG than moderate 

intensity continuous exercise of the same volume, while changes in WC and BP were 

similar between groups [73].  Since few studies included in the systematic review 

included high intensity exercise, this may also explain lack of change in FPG.  However, 

with low levels of participation in physical activity, moderate intensities may be more 

acceptable for the general population and therefore more likely to be adopted into daily 

habits than vigorous activity.   

The Diabetes Prevention Study and Diabetes Prevention Program were two landmark 

studies investigating the effects of lifestyle intervention on disease progression.  The 

Diabetes Prevention Study compared a lifestyle intervention aimed at increasing physical 

activity and dietary fibre and reducing saturated fats with a 5% weight loss goal to a 
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control group [74].  Participants were aged 40-65y, overweight and presented with 

impaired glucose tolerance [74].  After a mean study duration of 3.2y, MetS risk factors 

WC, SBP, DBP, FPG and TG were reduced to a greater extent in the intervention 

compared to the control group, with no differences in HDL.  Additionally, after two 

years, the risk of developing type 2 diabetes was 58% lower in the intervention than the 

control group [74].  At four [75] and nine [76] years following cessation of the 

intervention, relative risk remained 43% and 38% lower, respectively in the intervention 

group.  Risk reduction was predicted by adherence to the lifestyle changes after the 

program had stopped [75,76], highlighting the importance of post-program support.   

The Diabetes Prevention Program similarly compared an intensive lifestyle intervention, 

but to pharmacological therapy with metformin or placebo plus standard lifestyle 

recommendations [77].  Participants were aged 25y and up, overweight and had impaired 

glucose tolerance [77]. At an average follow-up of 2.8y, incident diabetes was reduced by 

31% in the metformin group and 58% in the intensive lifestyle intervention group 

compared to the placebo group [77].  Following this intervention, all participants were 

invited back for a long-term follow-up with the intensive lifestyle intervention and after 

ten years, the incidence of diabetes was equal in all groups, now receiving equal lifestyle 

advice and support [78].  This is supported by a recent meta-analysis which demonstrated 

the effectiveness of both pharmacological and lifestyle interventions in reversing MetS 

[79].  When MetS was treated with anti-diabetic, lipid controlling or appetite suppressant 

pharmacotherapy, the odds of MetS reversal was increased 60% compared to control with 

no intervention, and when MetS was treated with lifestyle intervention (dietary or 

exercise advice or supervised exercise), the odds of MetS reversal was increased almost 
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four-fold compared to control [79].  Although the heterogeneity of studies included in the 

analysis prevented conclusive results, there was an 87% probability that lifestyle 

interventions were more effective than pharmacological interventions [79].  Together, 

these studies highlight the importance of lifestyle interventions, including physical 

activity, to treat MetS risk factors and importantly to prevent development of disease.   

1.3.2 Exercise interventions to improve HRV 

Studies investigating the effect of exercise on HRV have had mixed results.  An early 

study showed that young adults with mild hypertension who completed 22 minutes of 

calisthenics followed by 20 minutes of jogging a minimum of five times per week 

increased resting RRI and HFnu and reduced LFnu [80].  A 30-week exercise training 

intervention, walking or jogging three to four times per week for 30 minutes per day at 

68-81% HR reserve increased SDNN in middle-aged to older men [81].  Similarly, in 

post-menopausal women, lower intensity exercise at 50% of maximal oxygen uptake 

(VO2max) three to four times per week for 45 minutes increased RMSSD, SDNN and 

absolute values of frequency domain HRV parameters, with no change in LFnu or HFnu 

[82]. One study in T2D patients with and without cardiac autonomic neuropathy showed 

improvement in HRV parameters following six months of aerobic exercise three times 

per week at 70-85% of HR reserve [83]. Other studies also showed improvements in 

HRV in sedentary men following eight weeks of exercise training 6 days per week for 

30-60 minutes per session [84,85], and these improvements were partially preserved 

following 10 months of post-program home-based exercise [84].  Conversely, one study 

showed no change in HRV parameters at rest or during exercise in older men and women 
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after eight weeks of aerobic exercise training three times per week for 60 minutes each 

session [86].   

Other studies found that while resting HRV was not altered with endurance training, 

HRV was altered during exposure to stressors [87-89].  One session of high-intensity 

training and one session of low-to-moderate intensity exercise per week for 14 weeks 

reduced HR and increased HRV at the same absolute workload following training, but 

there were no differences in resting HRV, or HRV at the same relative workload [88].  

Similarly, in obese women with and without T2D, 16 weeks of moderate intensity 

endurance training (65%VO2max) four days per week increased post-exercise HR 

recovery, HF and LF with no changes in resting HRV [87].  Six months of exercise 

training two days per week for 70 minutes at moderate intensity did not affect resting 

HRV in T2D patients, but HFnu was increased and LF/HF reduced during an orthostatic 

challenge [89].  Reasons for discrepancies between trials may be due to exercise program 

or population characteristics. 

Frequency of exercise training may be an important factor, as those with sessions five to 

six times per week [80,84,85] showed improved HRV, while in those with training 

sessions four times per week or less, results were mixed.  In four studies that did not 

show changes in resting autonomic function, exercise training frequency was only two or 

three times per week  or only one session per week was supervised and the remaining 

were completed at home, so compliance to the exercise protocol may not be as high as 

reported.   
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Exercise duration, on the other hand, did not affect HRV modifications toward vagal 

dominance following an eight-week aerobic exercise intervention [85].  Thirty or 60-

minute sessions six times per week at approximately 75% VO2max had similar effects on 

frequency domain HRV parameters and fractal correlation properties of RRI data [85].  

Again, moderate-to-vigorous activity on most days of the week appears to be important 

for HRV modification, though duration longer than 30 minutes does not seem to have 

added value. 

Exercise intensity may play a role in modifying HRV.  Cornelissen and associates [90] 

showed that healthy adults aged 55 years and older completing three one-hour exercise 

sessions per week for ten weeks reduced RRI when intensity was both 33% and 66% of 

HR reserve.  However, only the lower intensity group increased TP, though there were no 

changes in other HRV parameters in either group [90].  However, a number of exercise 

interventions with moderate-to-vigorous intensity exercise reported change [80,81,83-

85].  Differences may be due to participant characteristics.  Overtraining has been shown 

to reduce HRV in athletes [91], so in the general population and especially in sedentary 

and patient populations HRV may be reduced at lower training loads.  Kiviniemi and 

colleagues [92,93] developed a protocol whereby daily training intensity was prescribed 

according to morning HRV.  If HRV was increased, higher intensity exercise was 

prescribed, or if HRV was reduced lower intensity exercise or a day of rest was ordered 

[92,93].  This unique protocol may produce the ideal exercise training program 

optimizing frequency and intensity based on individual physiological state.   

 Age may be important factor in HRV responses to exercise.  Lee and colleagues [94] 

examined the effects of low doses of atropine (which are parasympathomimetric, as 
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opposed to higher doses, which are parasympatholytic) on changes in RRI and HRV in 

young and old fit and unfit individuals.  While resting RRI was increased in fit 

individuals compared to unfit, the responses to parasympathomimetic atropine were 

affected by age and fitness did not attenuate age-related declines in response [94].  Thus 

the lack of change in HRV in response to exercise training may be due to reduced 

function or sensitivity of the sinus node with age, which may not be modified with 

intervention.  One study in older women showed that exercise improved HRV when 50%, 

100% or 150% of national exercise guidelines was completed; however, in women aged 

> 60y, there were no improvements at lower exercise doses – only higher ones [95].  

These findings suggest that improved HRV may be less attainable in older age groups 

and that achievement of National physical activity guidelines may be especially 

important in older populations to manage cardiometabolic risk. 

In the Diabetes Prevention Program, intensive lifestyle modification (physical activity 

and low fat diet) reduced HR and increased SDNN and RMSSD compared to metformin 

or placebo [96].  Importantly, reductions in HR and increases in SDNN and RMSSD over 

time were associated with lower risk of incident diabetes, independent of weight loss and 

physical activity in the lifestyle modification group, supporting the use of HRV or the 

change in HRV in response to an intervention, as a risk indicator [96].  HRV was 

measured from 10s ECG segments, so neither frequency domain nor nonlinear 

parameters could be examined, which also have important prognostic power, as reviewed 

earlier.  Nevertheless, these results are promising and suggest that lifestyle modifications 

are important for risk reduction in a diabetes prevention strategy.   

1.4 Strategies for exercise programming 
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There is a plethora of evidence to support exercise as an important component of 

cardiovascular risk reduction and diabetes prevention programs.  While supervised 

exercise is important in clinical studies to ensure program compliance and to properly 

control factors such as exercise intensity and duration, implementation of such programs 

at a population level would be costly and impractical.  The following section discusses 

two strategies for exercise intervention that have potential to cost-effectively reach a 

large population and effectively reduce cardiometabolic risk. 

1.4.1 Exercise Prescription in Primary Care 

Exercise prescription in primary care has proved to successfully engage patients in 

healthy physical activity behaviours [97] and receiving a written prescription is more 

effective than oral advice [98].  The Step Test and Exercise Prescription (STEP™) is an 

effective tool for testing fitness and providing a written exercise prescription in primary 

care [99] and it has been validated in adults aged 18-85 years [100,101].  The STEP™ 

fitness assessment involves stepping up and down a set of two steps (each with a rise of 

20cm) 20 times at a pace the participant would normally climb the stairs [99].  Since 

there was no difference in outcome when the test was completed at a normal or a fast 

pace, a normal pace was selected to make the test safer for a broader population [101].  

Post-exercise HR is palpated from the radial artery and included in a predictive equation 

for VO2max.  Appendix 1 provides the full STEP™ protocol including the predictive 

equation.  Following the step test, an exercise prescription is written including fitness, 

fitness rating, a target exercise HR and recommendations for aerobic exercise based on 

national guidelines. 
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Implementation of STEP™ requires few resources.  In primary care it can be delivered 

either by a physician or allied health professional, and counseling can be done 

individually or in groups. Additionally, STEP™ is also valid when a standard staircase or 

kitchen step stool is used in place of the original STEP™ unit [102].  Since few resources 

are needed, STEP™ could also be implemented in community settings to reduce the 

burden on family health teams and to reach individuals who do not have a family 

physician. 

A recent systematic review and meta-analysis showed that STEP™ was the only exercise 

prescription in primary care intervention protocol that showed significant effects on 

cardiorespiratory fitness [103], which is important considering that increased 

cardiorespiratory fitness reduced cardiovascular mortality [68].  Authors hypothesized 

that this was due to one feature that was unique to STEP™, which was the inclusion of 

prescription of a target exercise HR [103].  Global guidelines recommend accumulating 

150 minutes of moderate-to-vigorous aerobic activity weekly for optimal health benefits 

[69]; thus, inclusion of target exercise HR could be an important component to the 

exercise prescription to ensure that the appropriate exercise intensity is reached. 

STEP™ has proved to be an effective tool, particularly as a first-line treatment for MetS.  

A recent review showed that STEP™ effectively improved MetS risk factors by reducing 

WC, BP and FPG, although there were no changes in TG or HDL despite positive 

changes in total and LDL cholesterols [99].  STEP™ intervention has also improved 

more novel cardiometabolic risk factors, including carotid artery β-stiffness index, 

distensibility and strain [99].  Thus, STEP has the potential to be an important tool, either 

in the clinic or community, for cardiometabolic risk management.  Since STEP 
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interventions have consistently improved cardiorespiratory fitness and cardiometabolic 

risk factors, HRV may also be positively influenced, though this has not yet been 

examined. 

1.4.2 Mobile Health Interventions 

Electronic health (eHealth) is defined as “an emerging field in the intersection of medical 

informatics, public health and business, referring to health services and information 

delivered or enhanced through the Internet and related technologies” [104].  mHealth is a 

branch of eHealth with essentially the same goals, but with the added benefit of mobility 

and portability, since the technological medium is a mobile phone.  In the United States, 

85% of the population owns a mobile phone, and in this group smartphone ownership has 

risen from 33% in May 2011 to 53% in November 2012 [105]. With the rapid growth of 

smartphone users, mHealth interventions allow for the potential to reach a broad 

population.  Importantly, many lower income and minority groups have opted to own a 

smartphone instead of a home computer as a more cost-effective means to combine 

mobile phone and internet service [106].  In fact, world-wide, the use of short message 

service (SMS – text messaging) is approximately double that of the internet [107]. 

There are a number of potential benefits to mHealth interventions.  Firstly, as already 

mentioned, they have the potential for broad reach, since a large proportion of the 

population owns a mobile phone [105].  Secondly, much like other eHealth interventions, 

they allow for interactivity to engage users.  Interactivity is important for communication 

between users or between users and technology and it is sometimes considered necessary 

for behaviour change [108].  Thirdly, since many keep their mobile phone nearby at all 
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times, it has the potential to act as a trigger or call to action to complete a behaviour. The 

iStepLog smartphone application was developed to supplement the 10,000 Steps internet-

based program and researchers showed that participants used the smartphone application 

71.2% of the time and the website only 28.8% of the time [109].  With the opportunity to 

use either medium for intervention support, smartphone was more popular, possibly 

because of the increased convenience.  Fourth, with internet connectivity, smartphones 

can empower users by allowing the ability to search for health information when it is 

needed. 

While mHealth interventions have the potential to reach a broad population, there are 

some limitations.  First, since technology changes so quickly, it is difficult to run and 

complete robust clinical trials before new and improved applications and technologies are 

available and privacy must be ensured according to HIPPA or other governing bodies.  

Secondly, there are subgroups of the population with less access to mobile phones, and 

some of these are important groups for health interventions, such as the elderly [106].  

Lastly, additional costs to activate some features of mobile phones may prevent or limit 

the ability of some to use mHealth interventions to their fullest potential [106]. 

A recent meta-analysis of mHealth interventions to increase physical activity reported 

increased pedometer steps, but no change in moderate-to-vigorous physical activity 

duration [110].  This may be due to differences in populations, as the three studies 

included in the analysis that examined pedometer steps included adults and one of these 

was for chronic obstructive pulmonary disease rehabilitation, which may have increased 

motivation to comply to the intervention.  In contrast the studies examining changes in 

moderate-to-vigorous physical activity duration included one group of children, one of 
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teenagers, and the remaining three were of adults, including one group of post-natal 

women.  Older adults are more compliant with technology interventions [111], which 

may account for differences.  The results of the meta-analysis should be interpreted with 

caution.  Authors noted that due to the few numbers of published studies, those included 

in the analysis were rather heterogeneous [110].  Study duration ranged from two to 52 

weeks, age ranged from children to older adults, and intervention delivery varied greatly, 

despite the fact that mobile phones were used in all studies.  Additionally, most studies 

using mobile platforms did not use the full range of features and many used only SMS for 

reporting and follow-up.   

Research to date supports the use of mHealth interventions for diabetes management.  In 

a meta-analysis of 22 studies, Liang and associates [112] reported that reductions in 

glycated hemoglobin (HbA1c) were 0.5% greater in the mHealth groups compared to 

control groups, and this difference was even greater in T2D (0.8%).  Trials included in 

this meta-analysis were three to 12 months duration and the interventions using the 

mobile phone were diverse.  Most interventions included transmission of self-monitored 

FPG, though some used the mobile phone for education only.  Twelve of the trials used 

mobile phone in conjunction with internet as the medium for intervention delivery.  Two 

trials compared internet-based to mobile phone-based interventions.  One showed that 

improvements in HbA1c levels, satisfaction levels and adherence to study protocols were 

similar between groups [113], while the other showed no change in HbA1c in either 

group, but there were differences in intervention use [114].  The mobile phone-based 

group responded to more reminders to check glucose, but the internet-based group 

submitted more measurements without reminders.  Submission of measurements was 
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higher in the mobile phone group at the beginning of the intervention and decreased in 

both groups such that in the final month of a three-month intervention, only one of 

eighteen receiving email reminders and three of twenty-two receiving SMS reminders 

continued to submit measurements [114].  Together these findings suggest that while the 

overall results of mHealth versus internet-based interventions may be similar, use of 

these technologies is different.  Interventions may have greater impact if device use is 

investigated and future protocols are developed according to use patterns. 

Evidence also supports the use of mHealth technology for BP control in patients with 

T2D and uncontrolled hypertension.  Logan and colleagues [115] tested the effects of a 

one-year self-care support intervention, in which participants received a smartphone and 

Bluetooth enabled BP monitor.  Once participants submitted BP measurements, they 

received automated feedback via smartphone application.  If BP was outside of pre-

determined limits, they were prompted to take additional measurements and to schedule 

physician follow-up appointments if needed.  Compared to a control group, who 

monitored BP, but did not get feedback, the intervention group reduced daytime 

ambulatory systolic BP by 9 mmHg, while there was no change in the control group 

[115].  Importantly, all of the self-care messages were automated and neither researchers, 

nor health care workers were regularly in contact with participants throughout the trial.   

Interventions utilizing mHealth technology have shown potential as important tools for 

disease management.  To date, one pilot study has examined the effects of an eHealth 

intervention with a mHealth component in an attempt to control MetS risk factors and 

thus, prevent disease progression [116].  The study enrolled 226 workers with at least one 

MetS risk factor according to ATPIII guidelines.  The workplace eHealth program 
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consisted of a four-week education module (60 minutes per session) plus access to 

telephone counseling, SMS messages and/or email messages for six months.  

Additionally, pedometers were used to record daily step counts and BP monitors and 

body fat scales were available in “eHealth zones”, which were installed in each 

participating workplace, to measure BP twice daily and body fat once weekly.  SMS 

messages were sent once weekly to counsel regarding mean step counts, BP and body fat 

or to follow-up when BP exceeded a threshold limit of 160/100 mmHg.  Emails were sent 

monthly with a summary of readings.  Following six months, WC, SBP, DBP and TG 

were reduced, with no changes in HDL [116].  FPG was also reduced, though only in the 

group that started with MetS, not in the group with less than three MetS risk factors at 

screening [116].  Additionally, the number of risk factors was reduced at follow-up – nine 

percent of the population ended the study with zero risk factors, whereas everyone 

commenced the study with at least one.  In summary, this six-month eHealth intervention 

improved MetS risk; however, it was limited to a population of workers whose employers 

accepted the Healthy Workplace Program.  Additionally, FPG was not monitored, despite 

the relative ease of obtaining those measures.  Future research is needed to examine the 

efficacy of a mHealth intervention aimed at home monitoring and management of risk 

factors, which would allow for the inclusion of a broader population.   

1.5 Thesis overview 

The overall objective of this thesis was to examine relationships between MetS risk 

factors and HRV parameters.  This was accomplished both cross-sectionally, by 

examining associations between MetS components and HRV, and longitudinally by 

investigating associations between changes in MetS components and changes in HRV in 
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response to a novel intervention combining exercise prescription in primary care with a 

mHealth home monitoring intervention for reducing cardiovascular risk.  It was 

hypothesized that HRV parameters would be associated with MetS risk factors.  

Additionally, it was hypothesized that both MetS and HRV would be improved with a 

mHealth-supported exercise intervention and that the changes in HRV will be associated 

with changes in MetS risk factors. 

Chapter 1 has provided basic background information on HRV and MetS.  A literature 

review examining the effects of lifestyle intervention, primarily increased physical 

activity and exercise, on modification of MetS risk factors and HRV suggests that there 

may be a link between the two cardiovascular risk factors.  While exercise is known to 

improve cardiovascular risk, a large proportion of the population does not engage in 

sufficient amounts of physical activity to get full benefits.  This chapter also examined 

the potential of written exercise prescription in primary care settings or mHealth 

supported interventions for health promotion. 

Chapter 2 is a systematic review to synthesize the cross-sectional evidence to date that 

has examined differences in HRV in populations with or without MetS and/or 

associations between HRV parameters and MetS risk factors.  This study found that HRV 

was lower in women with MetS compared to those without, but that findings in men were 

mixed.  One study included in the review suggested that autonomic dysfunction may be 

the factor responsible for insulin resistance, as alterations in HRV (SDNN and α1) were 

seen in persons with one or more risk factors, while alterations in insulin resistance were 

not apparent until at least two risk factors were present [52].  The review concluded that 
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more rigorous analysis was needed in future examinations to gain greater understanding 

of potential mechanisms associated with autonomic dysfunction in MetS. 

Chapter 3 is a cross-sectional investigation of associations between HRV parameters and 

MetS risk factors.  As hypothesized, autonomic impairment (demonstrated by reduced 

HRV) was generally seen in women with MetS, but not men.  Multiple linear regression 

models were run with and without insulin resistance included to determine whether it 

strengthened the predictive model.  Insulin resistance was associated only with HR, 

which may be reflective of sympathetic activity in MetS populations.  While these 

findings suggest that insulin resistance contributes to sympathetic hyperactivity, but not 

impaired vagal function in MetS, cross-sectional studies do not allow for conclusive 

findings, and longitudinal studies are needed. 

Chapter 4 is a pilot study to test the feasibility of a mHealth intervention to increase 

physical activity and improve the cardiometabolic risk profile in a rural population.  This 

eight-week study proved that the technology was acceptable and feasible for participants 

and researchers.  Additionally, despite the short intervention period, fitness and some 

MetS risk factors were improved and HRV was modified.  However, due to the single-

sample design of the study, it cannot be concluded that the mHealth support provided any 

additional benefit to the exercise prescription. 

Chapter 5 sought to  examine longitudinal associations between changes in HRV 

parameters and MetS risk factors caused by increased physical activity.  To promote 

increased activity, a randomized controlled trial was run comparing a mHealth 

application to support increased physical activity to standard of care exercise 
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prescription.  Only changes in HR, SDNN and α1 were associated with changes in MetS 

risk factors.  

Chapter 6 summarizes the overall thesis and provides direction for future research and 

knowledge translation activities. 
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CHAPTER 2 

Heart Rate Variability and the Metabolic Syndrome – A Systematic Review 

2.1. Introduction 

 Metabolic syndrome (MetS) is a clustering of risk factors that increases the relative risk 

of developing cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2D) more in 

combination than the simple addition of individual risk [1].  CVDs are the leading cause 

of mortality worldwide [2] and it has been suggested that management of MetS risk 

factors could substantially reduce risk [3].  Cardiac autonomic function, which can be 

measured non-invasively with heart rate variability (HRV), has been suggested as a 

potential mechanism underlying the development of MetS and CVD because of its 

predictive power [4].  Autonomic dysfunction characterized by reduced HRV is 

predictive of development of coronary heart disease [4,5] and T2D [6,7] and of all-cause 

and cardiac mortality [8,9].  From this perspective, HRV could be a valid tool for 

monitoring the progression of CVD. 

To gain insight into the potential relationship between autonomic function and 

development of CVD, a number of cross-sectional studies have examined relationships 

between HRV and MetS [10-23].  Studies have examined differences between HRV in 

individuals with (MetS+) or without MetS (MetS-) and have investigated associations 

between HRV parameters and individual MetS risk factors.  A number of different MetS 

definitions, data collection protocols and analyses have been used, which makes 

interpretation of results difficult.  Therefore, the purpose of this systematic review was to 
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describe the evidence in the literature examining relationships between HRV and MetS 

and to provide recommendations for future studies.   

2.2.  Methods 

2.2.1 Study Inclusion/Exclusion Criteria 

The population of interest was adults aged ≥ 18 years.  Studies were required to utilize 

one of the major MetS definitions [24-27] – therefore, the search was limited to the years 

1999 (following publication of WHO guidelines) to 2012.  Studies were included if they 

examined differences in standard HRV parameters [time domain (standard deviation of 

normal to normal RR intervals (SDNN), root square mean of successive differences 

(RMSSD); frequency domain (ultra low (ULF: 0-0.003Hz), very low (VLF: 0.003-

0.04Hz), low (LF: 0.04-0.15Hz) and high (HF: 0.15-0.4Hz) frequency and total power 

(TP)) or non-linear (Poincaré plot standard deviation of instantaneous (SD1) and 

continuous variability (SD2); detrended fluctuation analysis short-term scaling exponent 

alpha (α1); beta-index (β) and approximate entropy)] between MetS+ and MetS-, or if 

they examined associations between HRV and the overall number of MetS components 

present or between HRV and individual MetS risk factors.  Studies were limited to those 

examining humans.  Only papers published in English were included in this review.   

2.2.2 Search Strategy 

EMBASE and PubMed (1999-December 2012) databases were searched for articles with 

the key words “heart rate variability” and “metabolic syndrome”.  In press articles that 

could be accessed electronically ahead of print were searched and included in the review.  
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Reference lists of included papers were examined to select papers that were not identified 

through database searches. 

2.2.3 Quality Appraisal 

Articles were reviewed and scored with a Downs and Black scale [28] modified to be 

appropriate for the cross-sectional studies included in this review.  A maximum score of 

17 was attainable.  Data were extracted (with a form created specifically for this review) 

on sample size, population demographics, HRV analysis details, MetS classification, 

HRV in MetS+ versus MetS-, HRV associations with the number of MetS components 

and with each MetS risk factor – that is, waist circumference (WC), systolic and diastolic 

blood pressure (SBP; DBP), fasting plasma glucose (FPG), triglycerides (TG) and high 

density lipoprotein cholesterol (HDL).  Authors were contacted in an attempt to clarify 

data, when needed. 

2.3. Results 

2.3.1 Identification of Studies 

The initial search returned 72 articles.  Twenty-five were excluded  because they were 

not original journal articles (i.e. review papers, editorials, letters, notes or abstracts) and 

twelve were duplicates across databases.  Therefore, 35 abstracts were reviewed.  

Seventeen papers were excluded from the review because analysis did not examine 

associations between MetS and HRV directly (n=6), experimental design was 

longitudinal and cross-sectional analyses were not included (n=5), the population did not 

meet inclusion criteria (due to disease, age or MetS definition that was not standard) 

(n=4), or heart rate parameters other than standard measures of variability were examined 
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(n=2).  Eighteen full-text articles were reviewed.  Four papers were excluded because 

standard MetS definitions were not used (n=2), HRV analyses were not standard (n=1), 

or associations between MetS and HRV were not directly examined (n=1) (Figure 1).   

2.3.2 Summary of Included Studies 

The 14 studies included in the review are summarized in Table 2.1.  Quality scores 

ranged from 7-14 out of a maximum of 17.  Despite known sex differences and age 

effects, not all studies adjusted for these variables.  Only three studies separated analysis 

by sex [10,13,17] and three study populations included only males [11,14,15].  

Additionally, heart rate (HR) is known to affect HRV and only one study included an 

adjustment for this variable [17]. 

Most studies analysed short-term HRV over a period of three [17] or five [10-13,15,18-

20,22] minutes.  The ECG recording was collected in the supine [10-13,17,22] or seated 

position [18-20], or unspecified [15].  One study did not describe short-term HRV 

analysis – therefore, only 24h HRV from this study was included in this review [21].  

Five studies analysed HRV over a 24hr period, four in free living conditions 

[10,16,21,23] and one under more stable conditions in a laboratory [14].  Since short- and 

long-term HRV are not directly comparable, these analyses will be considered separately 

in this review. 

2.3.3 Heart rate variability according to metabolic syndrome status 

Table 2.2 summarizes the eight studies that examined differences in short-term HRV 

between MetS+ and MetS- [10-13,17-21].  Scores ranged from 7-14.   
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Figure 2.1: Study flow diagram 
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Table 2.1: Summary of literature included in the review 

Reference Score N Age 
Range 
(y) 

Country Population MetS 
defini-
tion 

HRV  
analysis 

Assoumou et al, 
2010 [10] 

13 1101 ~65 France Older adults ATPIII 24 h &  
5 min 

Brunner et al, 
2002 [11] 

10 183 45-63 United 
Kingdom 

Working men ATPIII 5 min 

Chang et al, 
2010 [12] 

14 1298 ≥20 Taiwan General 
population 

ATPIII 5 min 

Chang et al, 
2012 [13] 

7 129 19-62 Taiwan Intellectual 
disabilities 

ATPIII 5 min 

Gehi et al, 2009 
[14] 

13 288 45-60 United 
States 

Veteran men AHA 24 h 

Hemmingway et 
al, 2005 [15] 

10 2197 45-68 United 
Kingdom 

Working Men ATPIII 5 min 

Jarczok et al, (in 
press) [16] 

13 2441 17-65 Germany Industrial 
workers 

Harm-
onized 

24 h 

Koskinen et al, 
2009 [17] 

11 2283 24-39 Finland Young adults ATPIII, 
IDF 

3 min 

Lee et al, 2011 
[18] 

7 1027 NR South 
Korea 

Adults with 
Schizophrenia 

ATPIII 5 min 

Min et al, 2009 
[19] 

12 986 20-87 South 
Korea 

General 
population 

ATPIII 5 min 

Min et al, 2008 
[20] 

12 1041 20-87 South 
Korea 

General 
population 

ATPIII, 
IDF 

5 min 

Rasic-
Milutinovic et 
al, 2010 [21] 

10 47 NR Serbia Aged <65y ATPIII 24 h & 
5 min 

Soares-Miranda 
et al, 2012 [22] 

11 163 18-21 Portugal Young adults ATPIII, 
IDF 

5 min 

Stein et al, 2007 
[23] 

12 1267 >65 United 
States 

Older adults ATPIII 24 h 
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Table 2.2: Summary of investigations examining heart rate variability alteration in 

metabolic syndrome. 

 

Reference 

                   MetS+ compared to MetS- 

Total Population Men Women 

Short-term HRV 
Assoumou et al, 
2010 [10] 
 

↓TP, VLF, LF, 
LF/HF, LFnu, HFnu 

NS ↓LFnu, LF/HF 

Brunner et al, 2002 
[11] 
 

NR ↓SDNN, TP, LF, 
HF 

NR 

Chang et al, 2010 
[12] 
 

↓SDNN, HF, LF NR NR 

Chang et al, 2012 
[13] 
 

NS NS ↓TP, VLF, LF 

Koskinen et al, 2009 
[17] 
 

NR ↓HF 
↑LF/HF 

↓HF, HFnu 
↑LFnu, LF/HF 

Lee et al, 2011 [18] Schizophrenia – NS 
Healthy - ↓SDNN, 
RMSSD, LF, HF 
 

NR NR 

Min et al, 2009 [19] ↓SDNN, HF, LF 
 

NR NR 

Min et al, 2008 [20]  ↓SDNN, HF, LF 
 

NR NR 

24h HRV 
Assoumou et al, 
2010 [10] 
 

↓TP, ULF, VLF, LF NS ↓TP, VLF 

Gehi et al, 2009 [14] 
 

NR ↓TP, VLF, LF NR 

Rasic-Multinovic et 
al, 2010 [21] 

↓HF, ↑LF/HF NR NR 

HF – high frequency; HFnu – high frequency, normalized units; HRV – heart rate 
variability; LF – low frequency; LFnu – low frequency, normalized units; MetS+ - with 
metabolic syndrome; MetS- - without metabolic syndrome; NR – not reported; NS – not 
significant; RMSSD – root mean square of successive differences; SDNN – standard 
deviation of normal-to-normal intervals; TP – total power; ULF – ultra low frequency; 
VLF – very low frequency. 
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The six studies that scored highest (10-14) showed HRV differences in MetS+ and MetS- 

women.  Three studies showed that in a general population, SDNN, HF and LF were 

reduced in MetS+ compared to MetS- [12,19,20].  Two large studies, one of older adults 

(aged 65.6y) [10] and one of young adults (aged 29-34) [17] showed that some HRV 

parameters were altered in MetS+ compared to MetS- women, but both showed no 

differences in men.  Young MetS+ women had reduced HFnu and increased LFnu and 

LF/HF [17], while older MetS+ women had reduced LFnu and LF/HF [10].  Contrary to 

these results, in a smaller cohort of middle-aged men (aged 45-63y) SDNN, TP, LF and 

HF were reduced and HR increased in MetS+ compared to MetS-, with no differences in 

LF/HF [11]. 

Two lower scoring studies (7) examining more specific populations showed similar 

results.  There were no differences in HRV in MetS+ compared to MetS- in male adults 

with intellectual disabilities, although MetS+ women with intellectual disabilities had 

reduced TP, VLF and LF [13].  There were no differences in MetS+ versus MetS- in 

schizophrenics, but in healthy adults, MetS+ showed reduced SDNN, RMSSD, LF and 

HF [18].   

Three studies examined 24h HRV differences between MetS+ and MetS- [10,14,21] 

(Table 2.2), all of which received moderate-to-high scores (10-13).  Two studies 

examined middle-aged (aged 46-60y) [14] or older adults (aged 65.6y) [10] and showed 

reduced TP, VLF and LF in MetS+ with no differences between HF or LF/HF.  ULF was 

reduced in older adults with MetS [10], but not in the population of all males [14].  In a 

small sample of the general population aged less than 65y, lnHF was reduced and 

lnLF/HF was increased in MetS+ compared to MetS- [21].  Night-time HRV was 
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reported in one study, which showed that TP, VLF, LF, LF/HF and LFnu were reduced 

and HFnu increased in MetS+ compared to MetS- [10].   

2.3.4 Heart rate variability and the number of metabolic syndrome components present 

Four studies described changes in short-term HRV parameters with increasing number of 

MetS components [10,12,17,20].  All scored moderate-to-high on the modified Downs 

and Black scale (11-14).  Chang et al. [12] showed that SDNN was reduced when one or 

more risk factors were present compared to zero risk factors.  Two studies showed that 

there were no differences in frequency domain measures of HRV until at least three MetS 

risk factors were present [10,12].  Min and researchers [20] reported reductions in HRV 

with increasing number of MetS components, but did not report p-values, so significance 

is unknown.  Koskinen and colleagues [17] showed that the number of MetS components 

present was indirectly related to HF, LF and TP and directly related to LF/HF; however, 

after adjustment for age and resting HR, the inverse relationship to HF and relationship to 

LF/HF persisted in women only. 

The relationship between number of MetS components and HRV was also described by 

three high scoring (12-13) studies that examined 24h HRV [10,14,23].  One study 

examined the association between HRV and the number of MetS risk factors present, in 

which all HRV parameters except for HF were associated with the number of 

components [10].  Another study reported on differences between the presence of 0, 1, or 

≥2 components [23].  SDNN, TP and ULF were lower in individuals with 2 or more 

components compared to those with 0 or one component [23].  α1 was reduced in 

individuals with 1 or ≥2 components compared to those with 0 components, but there 



47 
 

were no differences between those with 2 and those with 1 components [23].  In older 

men, it was reported that individuals with all 5 components had an 18-50% reduction in 

HRV values compared to those with zero risk factors and that each one unit increment in 

the number of risk factors present reduced VLF by 8% and LF by 15% [14]. 

 2.3.5 Associations between heart rate variability and individual metabolic syndrome risk 

factors 

Table 2.3 summarizes the six short-term and four 24h HRV studies that used regression 

or correlation to investigates associations between HRV parameters and MetS risk 

factors. 

2.3.5.1 Heart rate variability and waist circumference 

Three moderate-to-high scoring studies (11-13) examining large populations showed 

associations with WC [10,17,20].  WC was negatively associated with SDNN, VLF, LF, 

HF [20], LF/HF and LFnu [10].  Sex differences were present and conflicting.  One study 

of older adults showed that WC was negatively associated with LF/HF and LFnu in 

women, but no associations in men [10], while a study of young adults showed WC to be 

associated with reduced HF, LF and TP in men with no associations in women [17].  

These relationships persisted after adjustment for age and HR.  Three low-to-moderate 

scoring studies (7-11) also showed equivocal results [13,15,22].  There were no 

associations between WC and HRV in young adults aged 18-21 [22], but in women with 

intellectual disabilities, increasing WC was associated with reduced VLF and LF/HF 

[13].  In a large cohort of men aged 45-68y, WC had strong inverse relationships with  
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Table 2.3: Summary of investigations examining associations between HRV and 

individual MetS risk factors. 

Reference ↑ WC ↑ BP ↑ FPG ↑ TG ↓ HDL 

Short-term HRV 
Assoumou et 
al, 2010 [10] 

Men: NS 

Women: 
↓LFnu, LF/HF 
All: ↓LFnu, 
LF/HF 

NS NS NS Men: ↓TP, 
VLF 
Women: 
↓LFnu, 
LF/HF 
All: ↓LFnu, 
LF/HF 
 

Chang et al, 
2012 [13] 

Men: NS 

Women: 
↓VLF, LF/HF 

NS Men: NS 

Women: 
↓TP, HF 

Men: ↓TP, 
VLF, HF 
Women: NS 

Men: 
↓LF/HF 
Women: NS 

 
Hemmingway 
et al, 2005 
[15] 
 

↓SDNN, HF, 
LF, ↑HR 

↓SDNN, 
HF, LF, 
↑HR 

↓SDNN, 
HF, LF, 
↑HR 

↓SDNN, 
HF, LF, 
↑HR 

↓SDNN, 
HF, LF 

Koskinen et al, 
2009 [17]  
 

Men: ↓TP, LF, 
HF 
Women: NS 

Men & 
Women: 
↓TP, LF, 
HF, ↑LF/HF 
 

Men: NS 

Women: 
↓HF 

NS NS 

Min et al, 
2008 [20] 
 

↓SDNN, HF, 
LF 

↓SDNN, 
HF, LF 

↓SDNN, 
HF, LF 

↓SDNN, 
HF, LF 

NS 

Soares-
Miranda et al, 
2012 [22] 

NS SBP: 
↓SDNN, 
RMSSD, 
HF, SD1, 
↑HR 

↓HFnu, 
↑LF/HF 

↓HF, HFnu, 
↑LF/HF, 
HR 

NS 

24h HRV 
Assoumou et 
al, 2010 [10] 

NS Men: ↓TP, 
LF, HF 
Women: NS 

All: ↓TP  

Men: NS 

Women: 
↓HF, 
↑LF/HF 
All: ↓HF 

Men: ↓TP, 
ULF, VLF, 
LF, HF 
Women: NS 

All: NS 

Men: NS 

Women: 
↓TP, ULF, 
VLF, LF 
All: ↓TP, 
ULF, VLF, 
LF 
 

Gehi et al, 
2009 [14] 

↓LF ↓VLF, LF ↓LF ↓ULF, VLF, 
LF, TP 
 

NS 
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Table 2.3 continued     
Jarczok et al 
(in press) [16] 

↓SDNN, 
RMSSD, LF, 
HF 

↓SDNN, 
RMSSD, 
LF, HF 

↓SDNN, 
RMSSD, 
LF, HF 

↓SDNN, 
RMSSD, 
LF, HF 
 

↓RMSSD, 
HF, ↑LF 

Stein et al, 
2007 [23] 

NR NR ↓SDNN, 
VLF, ↑HR 

NR NR 

BP – blood pressure; FPG – fasting plasma glucose; HDL – high density lipoprotein 
cholesterol; HF – high frequency; HFnu – high frequency, normalized units; HR – heart 
rate; HRV – heart rate variability; LF – low frequency; LFnu – low frequency, 
normalized units; MetS+ - with metabolic syndrome; MetS- - without metabolic 
syndrome; NR – not reported; NS – not significant; RMSSD – root mean square of 
successive differences; SDNN – standard deviation of normal-to-normal intervals; TG – 
triglycerides; TP – total power; ULF – ultra low frequency; VLF – very low frequency; 
WC – waist circumference. 
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SDNN, LF and HF [15].  In this study, the relationships between HRV and WC were 

stronger than relationship between HRV and all other MetS risk factors [15].   

Four studies examining 24h HRV scored 13 (high scores).  One study showed that WC 

was associated with all HRV parameters and that WC was the risk factor with strongest 

associations [16], while another study showed no associations [10].  A study of males 

showed that LF was reduced with increased WC [14].  When night-time HRV was 

examined, WC showed no association with HRV [10].   

2.3.5.2 Heart rate variability and blood pressure 

Relationships between BP and short-term HRV are inconsistent in the literature.  One 

moderate-scoring study showed that HF, LF and TP were indirectly, and LF/HF directly 

associated with SBP in men and women when adjustments were made for age, but when 

HR was also adjusted for, only increased LF/HF was associated with increased SBP in 

women [17].  A high-scoring study found that SDNN, VLF, LF and HF were negatively 

related to both SBP and DBP [20], but a study of older adults showed no associations 

between HRV and BP [10].  A moderate-scoring study of young adults showed SBP to be 

associated with reduced SDNN, RMSSD, SD1 and HF and increased HR [22].  All HRV 

parameters had strong linear associations with BP in men [15], but no associations were 

seen in adults with intellectual disabilities [13].   

24h HRV was generally associated with BP.  One study demonstrated that all HRV 

parameters were related with both SBP and DBP, although low HRV was more strongly 

associated with DBP [16].  Another study showed that hypertension was negatively 

associated with TP in older adults, but when sex differences were investigated, 
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hypertension was negatively associated with TP, LF and HF in men, but there were no 

associations in women [10].  One study reported that hypertension was associated with 

VLF and LF in men [14].  Night-time HRV was not associated with BP [10]. 

2.3.5.3 Heart rate variability and fasting plasma glucose 

Associations between FPG and short-term HRV vary.  Three moderate-to-high-scoring 

studies showed differing results.  One showed that all HRV parameters were negatively 

related to FPG [20], while another showed that FPG was associated with reduced HF in 

women, but not in men [17].  However, when HR and age were accounted for, no 

associations persisted [17], nor were there any relationships in older adults [10].  

Moderate-to-low-scoring studies showed that increased FPG was associated with reduced 

HFnu and increased LF/HF in young adults [22] and with reduced HF and TP in women 

with intellectual disabilities [13].  In males, FPG had strong linear associations with all 

HRV parameters [15]. 

In long-term HRV studies, multivariate analysis showed that increased FPG was 

associated with reduced 24h RMSSD, SDNN, HF and LF and increased HR [16].  A 

positive linear relationship was demonstrated between FPG and HR in the range of 4.4-

6.4mmol/L and a negative linear relationship was shown between FPG and both SDNN 

and VLF [23].  A study of older men showed that increased FPG was associated with 

reduced LF [14], while another study showed no associations between FPG and HRV in 

men, but negative and positive associations with HF and LF/HF, respectively, in women 

[10].  One study showed no associations between night-time HRV and FPG [10], while 
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another reported that increased FPG was associated with reduced RMSSD, SDNN, HF 

and LF and increased HR [16].   

2.3.5.4 Heart rate variability and triglycerides 

Differing associations have also been shown between short-term HRV and TG.  Two 

moderate-to-strong studies reported no associations between TG and HRV [10,17], 

though an inverse relationship in women was demonstrated following adjustment for age 

and HR [17].  Another strong study with a broader population showed that all HRV 

parameters studied (SDNN, VLF, LF, HF) were negatively related to TG [20].  

Moderate-to-low scoring studies also showed varying relationships.  In young adults, HF 

and HFnu were indirectly and LF/HF and HR directly associated with TG [22].  Men 

showed strong linear associations between TG and all HRV parameters [15], but men 

with intellectual disabilities showed indirect associations only with HF, VLF and TP [13].   

Long-term HRV studies also have had mixed findings.  One study showed that TG was 

associated with all HRV parameters studied [16], while another showed no associations 

in the whole population or in women [10].  In men, TG was negatively associated with all 

HRV indices except for LF/HF [10], or negatively associated with only ULF, VLF, LF 

and TP [14].  There were no associations between day-time HRV and TG, but TG was 

negatively associated with night-time TP, LF and HF in men [10].  There were no 

relationships between night-time HRV and TG in women [10]. 

2.3.5.5 Heart rate variability and high density lipoprotein cholesterol 

In most studies, HDL was not associated with any short-term HRV parameter 

[15,17,20,22].  However, one strong study showed that LF/HF and LFnu were associated 



53 
 

with HDL in the entire population and in older women and TP and VLF were associated 

with HDL in older men [10].  Additionally, LF/HF was associated with HDL in men with 

intellectual disabilities [13]. 

HDL was not associated with 24h HRV in men [10,14], but it was associated with all 

HRV except SDNN in a general population [16], and with 24h TP, ULF, VLF and LF in 

women [10].  HDL was negatively associated with night-time TP and VLF in the whole 

population and with night-time VLF and LF in women, though there were no associations 

in men [10]. 

2.4. Discussion 

The key findings of this systematic review are that: 1) HRV generally is reduced in 

MetS+ compared to MetS- in women, but results in men are inconsistent; 2) SDNN and 

α1 are reduced with increasing number of MetS components present in an individual, 

though differences for other HRV parameters may not be apparent until three MetS risk 

factors are present; and 3) time and frequency domain HRV parameters are associated 

with MetS risk factors and sex differences are apparent.   

Most papers reported on standard frequency domain parameters of HRV.  These findings 

are important because frequency bands are thought to reflect different components of the 

autonomic nervous system.  A number of investigators have shown that the HF band is 

reflective of parasympathetic activity, while the LF band reflects a combination of 

sympathetic and parasympathetic activity and the LF/HF ratio is a measure of 

sympathovagal balance [29].  Papers generally reported that HF and LF were reduced, 

suggesting reduced vagal activity [11,17-20] and that in women, LF/HF was increased 
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[10,17] suggesting altered sympathovagal balance.  Both of these HRV states are 

associated with poor health outcomes, though both lifestyle [30] and pharmacological 

interventions [31] have shown promise in normalizing HRV in MetS patients. 

Non-linear HRV analysis has been used in recent years to describe the qualitative, rather 

than quantitative characteristics of heart rate.  Only one short-term [22] and one long-

term study [23] examined non-linear HRV.   Soares-Miranda and colleagues [22] 

reported that SD1 was reduced in young MetS+ adults compared to MetS-.  SD1 is 

considered to be primarily a measure of parasympathetic activity [32], and supports the 

results from frequency domain HRV analysis.  Stein and researchers [23] examined α1, 

which describes the short-term scaling qualities of the heart rate signal.  α1 was reduced 

when one or more MetS components were present, suggesting that breakdown of fractal-

like R-R interval dynamics may be an early contributor to development of MetS and 

subsequent CVD.  The breakdown of fractal complexity occurs when there is a lack of 

variability and when there is uncorrelated randomness [33].  Fractal breakdown has also 

been associated with co-activation of the sympathetic and parasympathetic nervous 

systems [34,35], which suggests that this pattern of autonomic regulation, which is unlike 

the usual reciprocal interplay between the two autonomic nervous system branches, may 

be an important mechanism in the progression to CVD.  Reduced α1 has been shown to 

predict arrhythmic and non-arrhythmic cardiac mortality in patients with depressed left 

ventricular function following a myocardial infarction [36]. 

Despite these general conclusions, there were inconsistencies between studies.  There are 

a number of potential explanations for these mixed findings.  Data collection methods 

were not consistent between studies.  Specifically, for the short-term data, some ECGs 
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were collected while participants were seated and some were supine.  Posture affects 

HRV and results from the seated position are more reproducible [37].  Data were 

generally collected for 5 min, though one study collected data for only 3 min. Perhaps the 

most important contributor to differences in results was breathing rate during the data 

collection period.  Some studies required their participants to breathe at a constant rate in 

time with a metronome, while others allowed free breathing.  Respiratory sinus 

arrhythmia is the primary contributor to the HF band of frequency domain HRV.  In 

persons with low breathing rates (less than 0.15Hz), this increase of power will show in 

the LF band instead.  Despite these methodological variances, differences in HRV 

according to MetS status in women were consistently shown, while differences in men 

were generally lacking. 

The findings of this systematic review are important as they give insight into mechanisms 

underlying the development of MetS and subsequently CVD and T2D.  A review of 

autonomic nervous system function in MetS showed that the individual risk factors – 

obesity, hypertension, hyperglycemia and dyslipidemia – all were associated with 

increased sympathetic and reduced parasympathetic activity [38].  It has been suggested 

that autonomic alterations may precede risk factor development [4], and this is supported 

by longitudinal studies which have found that individuals who developed CVD or T2D 

over an observational study period generally had lower baseline HRV than those who did 

not develop disease [5-7,39].  While this systematic review supports the hypothesis that 

autonomic dysfunction is associated with MetS in women, the cross-sectional design of 

the studies included does not allow causality to be inferred.  Studies examining 

differences in HRV according to presence of MetS risk factors could offer some insight 
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into causality on the premise that, if autonomic dysfunction precedes development of 

MetS, it would be expected that HRV would already be reduced when only one or two 

components were present compared to those with no risk factors.  With the exception of 

SDNN and α1, altered HRV was not apparent until three or more risk factors were 

present.  However, while this may suggest that HRV is not reduced until MetS is present, 

it may be that those with lower HRV are more likely to accumulate three or more risk 

factors, and therefore develop MetS compared to those with higher HRV, who may only 

develop one or two risk factors.  Robust longitudinal studies are needed for clarification. 

Insulin resistance has been hypothesized as an underlying mechanism responsible for the 

clustering of MetS risk factors in individuals [40].  Chang and colleagues [12] examined 

the association of HRV and insulin resistance with the number of MetS components 

present in an individual.  They showed that HRV was already altered in persons with one 

MetS risk factor, but insulin resistance was not apparent until two MetS factors were 

present.  Thus, it was suggested that autonomic modifications may precede changes in 

insulin resistance.  Interestingly, sympathetic hyperactivity is associated with insulin 

resistance [41-43].  This suggests that one of the reasons for discrepancies in the 

literature regarding associations between MetS risk factors and HRV may be the presence 

of insulin resistance.  Since all five components are associated with insulin resistance, it 

may actually be insulin resistance and not the MetS risk factors per se that is responsible 

for reductions in HRV.  This may also explain the underlying mechanism for reduced 

HRV in those with three or more compared to those with two or fewer components.   

There is no previously published systematic review of the associations between HRV and 

MetS.  Robust methods were used for this review, which included strategies to further 
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seek out articles beyond simple database searches.  However, articles were limited to 

those published in English.  Additionally, there is potential for publication bias.  Studies 

reporting non-significant differences between MetS+ and MetS- may not have been 

accepted for publication, and therefore, lack of difference between MetS+ and MetS- may 

be under-reported in the literature.   

There were considerable differences between the studies included in this review, which 

prevented meta-analysis.  Differences in data collection, including patient position (i.e. 

supine versus seated), breathing protocol (spontaneous versus paced), length of ECG 

recording and type of HRV analysis all affect HRV, and therefore prevent data synthesis.   

Since studies included in this review were cross-sectional in design, causality cannot be 

inferred.  Well designed longitudinal studies with robust measures and appropriate 

control or adjustments for confounding variables are needed to examine associations 

between HRV and the progression of cardiometabolic risk factors to CVD. 

Few studies reported associations between MetS risk factors and non-linear HRV 

parameters.  Examination of these relationships could offer unique insight into 

mechanisms underlying the development of risk factors and disease. 

In conclusion, this systematic review of the literature showed that HRV is reduced in 

women with MetS, though findings in men are inconclusive.  Although HRV has been 

shown to be reduced with increasing presence of MetS components, SDNN and α1 are the 

only parameters that were reduced with fewer than three risk factors in combination.  

Additionally, HRV is associated with all individual MetS risk factors, though 

associations vary by population.  Future studies should use consistent methods to allow 
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for better comparability between studies.  Additionally, more comprehensive analyses 

should be performed to ensure that confounders are appropriately accounted for and to 

investigate potential mechanisms. 
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CHAPTER 3 

Associations between heart rate variability, insulin resistance and metabolic 

syndrome risk factors – a cross-sectional study 

3.1 Introduction 

Heart rate variability (HRV) has been utilized in the non-invasive assessment of cardiac 

autonomic regulation.   Alterations in HRV parameters including reduced standard 

deviation of normal-to-normal RR intervals (SDNN) and reductions in the HRV spectral 

frequency bands have been shown to predict cardiac and all-cause mortality in patients 

with cardiovascular disease (CVD) [1,2] and in the general population [3,4].  

Additionally, low HRV may predict the onset of coronary heart disease in individuals 

with type 2 diabetes mellitus (T2D) [5].  The metabolic syndrome (MetS) is an important 

clinical  clustering of cardiovascular risk factors, which increases the risk of developing 

CVD and T2D [6].  It is unclear whether a relationship between HRV and MetS could 

provide an early marker of CVD and T2D risk.    

The Cardiovascular Risk in Young Finns Study investigated the association between 

three-minute supine HRV and MetS components (n=2283) [7].  This study showed that in 

frequency domain analysis, the number of MetS components present was inversely 

related to high- and low-frequency (HF, LF) and total power (TP) and directly related to 

the LF/HF ratio in women [7].  This study was, however, limited to persons between the 

ages of 24 and 39 years of age, so findings cannot be generalized to a broad population.  

Min and colleagues [8] examined the relationship between five-minute seated HRV and 

MetS in a sample of Korean men and women aged 20-87 years (n=1041).  They found 
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that the logarithmically transformed values of the SDNN, LF, HF and very low frequency 

(VLF) were lower in those with MetS compared to those without MetS [8].   

Each MetS component exhibits different associations with HRV parameters, though there 

are many discrepancies between studies.  Although there is no single risk factor that 

appears to be consistently related to HRV, generally, waist circumference (WC), systolic 

(SBP) and diastolic blood pressure (DBP), fasting plasma glucose (FPG) and 

triglycerides (TG) have strong support from the majority of studies examining short-term 

HRV [7-12], while high density lipoprotein cholesterol (HDL) has only shown 

association with HRV in two studies [9,11].  Relationships between MetS, the individual 

components of MetS and non-linear short-term HRV have only been examined in one 

published study to date and this study only examined Poincaré plot parameters in a young 

population aged 18-21 years [12].  To date, the relationship between other non-linear 

parameters, including detrended fluctuation analysis short term scaling exponent (α1) and 

approximate entropy (ApEnt), have not been examined in MetS, nor have Poincaré plot 

parameters been examined in a more representative population of adults. 

Insulin resistance has been implicated as an important mechanism linking the clustering 

of MetS risk factors and autonomic dysfunction, ultimately leading to CVD and T2D 

[13,14].  Chang and colleagues [15] noted that HRV was reduced in individuals with one 

risk factor, but insulin resistance was not apparent until two risk factors were present.  

However, the relationships between HRV, insulin resistance and MetS have not been 

studied. 
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Therefore, the purpose of this study was three-fold: first, to determine whether 

individuals with MetS would have abnormal linear and non-linear HRV compared to 

those without MetS; second, to determine which MetS risk factors were most strongly 

associated with HRV parameters (both linear and non-linear); and third, to examine 

whether insulin resistance was associated with HRV.  It was hypothesized that all HRV 

parameters would be reduced in MetS; that MetS risk factors except for HDL would be 

associated with HRV parameters; and that insulin resistance would be associated with 

HRV parameters. 

3.2 Methods 

This study was part of a multicentre trial conducted between August 2009 and December 

2011 at the Gateway Rural Health Research Institute (Seaforth, Ontario) and the 

Laboratory for Brain and Heart Health at Western University (London, Ontario).   

Participants were eligible if they were aged 18-70 years and presented with at least one 

MetS risk factor according to published guidelines [16].  Exclusion criteria were SBP > 

180 mmHg and/or DBP > 110mmHg; type 1 diabetes; history of myocardial infarction, 

angioplasty, coronary artery bypass or cerebrovascular ischemia/stroke; symptomatic 

congestive heart failure; atrial flutter; unstable angina; unstable pulmonary disease; use of 

medications known to affect heart rate (HR); second or third degree heart block; history 

of alcoholism, drug abuse or other emotional cognitive or psychiatric problems; 

pacemaker; unstable metabolic disease; and orthopedic or rheumatologic problems that 

could impair the ability to exercise.  In total, 224 participants (aged (mean±SD) 57.2±9.0 

y, range 23-70y; 72% female) provided informed consent and volunteered for this study, 
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which was approved by the University of Western Ontario Research Ethics Board 

(#15828).  

Participants reported to the laboratory following an overnight fast, where they were 

assessed for MetS risk factors.  WC was measured at the midpoint between the iliac crest 

and last rib [17], and participants were considered at risk if WC was greater than 88cm 

(women) or 102cm (men) [16].  Supine BP was calculated as the average of the last two 

of three measurements taken at one minute intervals (BpTRU™, VSM MedTech Ltd., 

Coquitlam, BC or manual).  A resting SBP ≥ 135 mmHg and/or DBP ≥ 85 mmHg 

qualified as a MetS risk factor [16].  Blood was drawn and sent to a central laboratory for 

FPG, TG, HDL and insulin analysis.  MetS risk factors were FPG ≥ 6.1 mmol/L, TG ≥ 

1.7 mmol/L and HDL ≤ 1.03 mmol/L (men) or 1.29 mmol/L (women) [16].  Those 

presenting with three or more risk factors were categorized as with MetS (MetS+), and 

those with two or fewer risk factors were considered without MetS (MetS-) [16].  

Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated with 

standard methods [18].   

Following a light, standardized snack, participants were instrumented for collection of a 

lead II ECG recording.  A respiratory belt (Pneumotrace II, ADInstruments, Colorado 

Springs, Colorado) was secured around the thorax for collection of respiratory rate.  RR 

intervals (RRI) were collected during ten minutes of supine rest.  External stimuli, such 

as light and noise were controlled to ensure signal stability.  Participants were instructed 

to remain still and awake.  All measures were sampled at 1000Hz, input into a data 

acquisition board (PowerLab ML795, ADInstruments) for analog-to-digital signal 

conversion with LabChart7Pro software (ADInstruments) and stored for offline analysis.  
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Lab Chart files were converted to text files for analysis with HRV software (Hearts v7, 

Heart Signal Co., Oulu, Finland).   

A predictive stepping test was used to estimate maximal oxygen uptake (VO2max).  The 

protocol has been published elsewhere [19].  Briefly, participants stepped up and down a 

set of two 20cm stairs, 20 times, at a pace considered normal. Age, sex, body weight, 

radial pulse measured immediately upon completing the step test and time to complete 

test were entered into the predictive equation. 

HRV Analysis 

Editing of the HR time series was performed by a single investigator.  All ECG signals 

were manually scanned for ectopic or non-sinus beats, which were deleted from the time 

series.  90% of data were needed for inclusion.  Time domain HRV analyses included 

HR, SDNN and the root square mean of successive differences (RMSSD).  The HRV 

spectrum was computed with the non-parametric fast Fourier transform method.  LF 

(0.04-0.15Hz), HF (0.15-0.4Hz), LF/HF and TP were examined.  A Poincaré plot was 

formed by plotting each RRI against the following one to create a scatter plot.  The 

standard deviation of the width (SD1) and length (SD2) were calculated.  The detrended 

fluctuation analysis method was used to examine fractal characteristics of heart rate 

fluctuations.  The root-mean square fluctuations of integrated and detrended data were 

measured in observation windows and then plotted against the size of the window on a 

log-log scale.  α1 was calculated from the slope of the line (from 4-11 beats).  ApEnt 

quantifies the regularity of time series data by calculating the likelihood that runs of 

patterns that are close will remain close on the next incremental comparison.  A greater 



68 
 

ApEnt value represents greater unpredictability in a system.  ApEnt was calculated from 

500 beats and was computed with length, m=2 and tolerance, r=20% 

Statistical Analysis 

In total, 23 participants were removed from analysis due to poor data quality, excessive 

non-sinus rhythm beats or missing data.  An additional four were removed from ApEnt 

analysis as 500 heart beats were not available for analysis.  Insulin was not analyzed in 

28 participants, who were then excluded from analysis including HOMA-IR.  Unpaired t-

tests were used to examine differences between normally distributed HRV parameters in 

MetS+ versus MetS-.  Welch’s correction was used for variables with unequal variance.  

A two-sample Wilcoxon test was used when variables were not normally distributed.  

Since sex differences have been demonstrated [7,9] analyses were run on the entire group 

and separately for men and women.  Multiple linear regression was used to determine 

which components of MetS were associated with HRV parameters, while adjusting for 

other variables.  An a priori decision was made to force age, sex, study site and VO2max 

into the model to account for potential confounding variables.  All MetS components 

were initially included in the model and the model was run using a backward elimination 

model-building algorithm, with alpha set at 0.1, serially removing the least important 

variable.  Regression diagnostics were run to test for influential observations and outliers, 

which were removed when necessary.  To test associations with insulin resistance, 

multiple linear regression models including HOMA-IR were completed as above.  Data 

are presented as mean ± standard deviation (SD) for normally distributed variables, as 

median and interquartile range (IQR) for non-normally distributed variables, and as 

regression coefficients (beta estimates) and 95% confidence interval (CI) for multiple 
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linear regression results, unless otherwise stated.  Statistical analysis was performed with 

R Statistical Software (version 2.15.1) [20].   

3.3 Results 

Participant Characteristics  

Participant characteristics are shown in Table 3.1.  Age was similar in MetS+ and MetS-.  

As expected, MetS+ had greater HOMA-IR, WC, SBP, DBP, FPG and TG, and lower 

HDL compared to MetS-.  Additionally, there were no differences in fitness.  In women, 

MetS+ had greater HOMA-IR, SBP, DBP, FPG and TG, and lower HDL compared to 

MetS-, but there were no differences in WC.  In men, TG was greater and HDL less in 

MetS+ compared to MetS-, but there were no differences in HOMA-IR, WC, SBP, DBP 

or FPG.  VO2max was higher and HDL lower in men compared to women. 

Heart rate variability in participants with or without metabolic syndrome 

Overall, there were no differences in time domain HRV parameters between groups in the 

whole population or in men.  Time domain HRV analysis in women revealed that SDNN 

was lower (38.0(27.0) ms, 44.5(29.3) ms; p=0.020) and HR higher (68(13) bpm, 64(12) 

bpm; p=0. 018) in MetS+ compared to MetS-, but there were no differences in RMSSD. 

After logarithmic transformation for normality, lnLF (5.81±1.09 ln ms2, 6.11±1.00 ln 

ms2; p=0.044) was lower in MetS+ than MetS-, with no differences in lnHF, lnTP or 

LF/HF.  In men, there were no differences in frequency domain measures of HRV 

between MetS- and MetS+.  In women, lnLF (5.73±1.06 ln ms2, 6.13±1.05 ln ms2; 

p=0.022) and lnTP (6.48±1.07 ln ms2, 6.87±1.04 ln ms2; p=0.030) were lower in  
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Table 3.1: Participant Characteristics 

 MetS- MetS+ p  
(MetS- 

vs 
MetS+) 

p  
(Men vs 
Women) 

n  
     Men 
     Women 

95 
21 
74 

129 
41 
88 

  

Age (y)  
     Men 
     Women 

58(12) 
57(12) 
58(11) 

59(10) 
59(9) 

59(11) 

0.778 

0.451 

0.887 

0.75 

WC (cm)  
     Men 
     Women 

103.3±14.6 
105.6±13.0 
102.6±15.0 

107.3±11.1 
109.0±10.6 
106.5±11.3 

0.036* 

0.307 

0.089 

0.09 

SBP (mmHg)  
     Men 
     Women 

131(25) 
135(22) 
130(23) 

135(17) 
134(15) 
138(20) 

0.020* 

0.914 

0.014* 

0.84 

DBP (mmHg)  
     Men 
     Women 

80±11 
84±11 
79(11) 

85±11 
86±10 
84(13) 

0.008* 

0.596 

0.009* 

0.06 

FPG (mmol/L)  
     Men 
     Women 

5.1(0.8) 
5.4(0.5) 
5.0(0.6) 

5.3(1.2) 
5.4(1.2) 
5.3(1.2) 

0.018* 

0.726 

0.019* 

0.15 

TG (mmol/L)  
     Men 
     Women 

1.01(0.56) 
1.13(0.63) 
1.00(0.31) 

1.75(0.98) 
1.77(1.08) 
1.75(0.93) 

<0.001* 

0.002* 

<0.001* 

0.16 

HDL (mmol/L) 
     Men 
     Women 

1.57(0.50) 
1.21(0.30) 
1.65(0.42) 

1.12(0.36) 
0.96(0.21) 
1.19(0.31) 

<0.001* 

0.002* 

<0.001* 

<0.001 

VO2max (ml/kg/min) 
     Men 
     Women 

30.9±6.3 
35.8±4.2 
29.6±6.2 

30.4±5.9 
34.9±5.2 
28.3±4.9 

0.510 

0.527 

0.146 

<0.001 

HOMA-IR  
     Men 
     Women 

1.56(1.19) 
1.77(0.58) 
1.33(1.23) 

2.80(2.47) 
2.95(2.59) 
2.62(2.41) 

<0.001* 

0.051 

<0.001* 

 

DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL, high density 
lipoprotein cholesterol; HOMA-IR, insulin resistance; MetS-, without metabolic 
syndrome; MetS+, with metabolic syndrome; SBP, systolic blood pressure; TG, 
triglycerides;VO2max, maximum oxygen uptake; WC, waist circumference. 
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MetS+ compared to MetS-, but there were no differences in lnHF, LF/HF (Figure 3.1). 

Overall and in men, there were no differences in non-linear HRV parameters between 

MetS+ and MetS-.  In women, SD2 (46.8(31.6) ms, 58.4(29.9) ms; p=0.014) was reduced 

in MetS+ compared to MetS-, but there were no differences in other non-linear HRV 

measures (Figure 3.2). 

Heart rate variability and metabolic syndrome components 

Table 3.2 presents the results for each best-fit multiple linear regression model, including 

predictors with alpha <0.1.  All models were adjusted for age, sex, study site and fitness 

and MetS components were tested for inclusion in the final models.  For time domain 

parameters, testing at a conventional alpha level of 0.05, only DBP was associated with 

HR (p=0.010), although SBP remained in the model to improve the fit.  TG was 

associated lnSDNN (p=0.029), and both WC (p=0.037) and FPG (p=0.012) were 

associated with lnRMSSD. 

In the frequency domain, TG (p=0.047) and HDL (p=0.039) were associated with lnLF 

and WC was associated with lnHF (p=0.024) and lnLF/HF (p<0.001).  No MetS 

components were associated with lnTP (p>0.05).   

For non-linear HRV parameters, WC (p=0.030) and FPG (p=0.018) were associated with 

SD1, and FPG (p=0.009), TG (=0.048) and HDL (p=0.002) were associated with SD2.  

WC was associated with α1 (p=0.023) and FPG was associated with ApEnt (p=0.033).  
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Figure 3.1: Differences in frequency domain heart rate variability.  Black bars, 

women without metabolic syndrome; white bars, women with metabolic syndrome; 

striped bars, men with metabolic syndrome; dotted bars, men with metabolic 

syndrome.  * p<0.05 compared to women without metabolic syndrome. 
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Figure 3.2: Differences in Poincaré plot variables.  Black bars, women without 

metabolic syndrome; white bars, women with metabolic syndrome; striped bars, 

men without metabolic syndrome; dotted bars, men with metabolic syndrome.   

* p<0.05 compared to women without metabolic syndrome. 
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Table 3.2: Multiple linear regression results with metabolic syndrome risk factors 

 β 95% Confidence 
Interval 

p-value F-statistic Adjusted R2 

HR 
     SBP 
     DBP 

 
-0.053 
0.009 

 
(-0.006, 0.000) 
(0.002, 0.016) 

 

0.062 

0.012* 

6.289 0.209 

lnSDNN 
     TG 
     HDL 

 
-0.074 
0.358 

 
(-0.141, -0.008) 
(-0.011, 0.727) 

 

0.029* 

0.057 

3.380 0.097 

lnRMSSD  
     WC 
     FPG 

 
-4.38x10-5 

-0.260 

 
(-8.51x10-5, -2.52x10-6) 

(-0.462, -0.585) 

 

0.037* 

0.012* 

3.556 0.125 

lnLF 
     TG 
     HDL 

 
-0.152 
0.880 

 
(-0.303, -0.002) 
(0.043, 1.717) 

 

0.047* 

0.039* 

3.106 0.087 

lnHF 
     WC 

 
-4.55x10-5 

 
(-8.50x10-5, -5.97x10-6) 

 

0.024* 

3.404 0.078 

lnTP 
     TG 

 
-0.125 

 
(-0.271, 0.020) 

 

0.091 

4.553 0.082 

LF/HF 
     WC 
     SBP 

 
4.64x10-5 

-2.34x10-4 

 
(1.95x10-5, 7.32x10-5) 
(-5.08x10-4, 4.11x10-5) 

 

<0.001* 

0.095 

2.877 0.079 

lnSD1 
     WC 
     FPG 

 
-3.41x10-5 

-0.125 

 
(-4.49x10-5, -2.31x10-6) 

(-0.229, -0.213) 

 

0.030* 

0.018* 

3.436 0.110 

SD2 
     FPG 
     TG 
     HDL 

 
-4.798 
-3.457 
30.847 

 
(-8.387, -1.209) 
(-6.878, -0.035) 
(11.540, 50.152) 

 

0.009* 

0.047* 

0.002* 

4.054 0.145 

α1 

     WC 
 

-1.07x10-5 
 

(1.51x10-6, 2.00x10-5) 
 

0.023* 

2.346 0.045 

ApEnt 
     FPG 

 
-6.31x10-3 

 
(-1.21x10-2, -5.07x10-4) 

 

0.033* 

2.351 0.039 

ApEnt, approximate entropy; α1, short-term scaling exponent; DBP, diastolic blood 
pressure; FPG, fasting plasma glucose; HDL, high density lipoprotein cholesterol; HF, 
high frequency power; HR, heart rate; LF, low frequency power; RMSSD, root mean 
square of successive differences; SBP, systolic blood pressure; SD1, Poincaré plot width; 
SD2, Poincaré plot length; SDNN, standard deviation of normal to normal intervals; TG, 
triglycerides; TP, total power; WC, waist circumference. 
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Heart rate variability and insulin resistance 

Table 3.3 shows multiple linear regression results with HOMA-IR included as a variable.  

HOMA-IR was associated with HR (p=0.003) and improved the fit of the model 

(Adjusted R2 0.220).  The models for lnSDNN, lnLF and ApEnt were essentially 

unchanged with the addition of HOMA-IR, while the inclusion of HOMA-IR in the 

models for lnRMSSD, lnHF, lnTP, LF/HF, lnSD1, SD2 and α1 reduced the adjusted R2 

value.   

3.4 Discussion 

The main finding of this study was that HRV profiles were less favourable in MetS+ 

compared to MetS-, and that differences existed in both linear and non-linear HRV 

parameters in women, but not in men.  Additionally, this study showed that HDL and TG 

were associated with overall variability, but abdominal obesity and FPG were associated 

with beat-to-beat HRV controlled primarily by the parasympathetic nervous system.  This 

study was the first to report that Poincaré plot analysis showed reduced parameters in 

MetS+ compared to MetS- in women, but not men.  SD2, which was reduced in women, 

is considered a marker of long-term variation [21,22].  Physiological modelling showed 

that the length of the Poincaré plot was correlated equally to both LF and HF spectral 

powers, which suggests that it is affected by both sympathetic and parasympathetic input 

[22,23].  Multiple linear regression showed that 14.5% of the variance of SD2 was 

explained by FPG, TG and HDL in this population.  There were no differences in SD1, α1 

or ApEnt in MetS+ compared to MetS-.  Interestingly, all of the non-linear parameters 

that were not significantly different between MetS+ and MetS- were shown by multiple  
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Table 3.3: Multiple linear regression results with metabolic syndrome risk factors 

and HOMA-IR 

 β 95% Confidence 
Interval 

p-value F-statistic Adjusted R2 

HR 
     IR 
     SBP 
     DBP 

 
1.298 
-0.144 
0.039 

 
(0.460, 2.135) 

(-0.247, -0.040) 
(0.039, 0.409) 

 

0.003* 

0.007* 

0.017* 

6.550 0.220 

lnSDNN 
     TG 
     HDL 

 
-0.090 

0.500 

 
(-0.160, -0.022) 
(0.057, 0.870) 

 

0.011* 

0.017* 

2.822 0.092 

lnRMSSD  
     TG 
     HDL 

 
-0.208 
1.086 

 
(-0.421, 0.005) 
(-0.172, 2.344) 

 

0.055 

0.090 

2.260 0.053 

lnLF 
     SBP 
     DBP 
     TG 
     HDL 

 
0.011 
-0.021 
-0.173 
1.152 

 
(-0.001, 0.022) 
(-0.041, -0.001) 
(-0.331, -0.016) 
(0.233, 2.071) 

 

0.069 

0.039* 

0.031* 

0.014* 

3.138 0.097 

lnHF 
 

   3.200 0.047 

lnTP 
     TG 

 
-0.143 

 
(-0.293, 0.006) 

 

0.060 

3.262 0.064 

LF/HF 
     WC 
     TG 

 
3.27x10-5 

-1.57x10-2 

 
(5.13x10-8, 6.53x10-5) 
(-3.17x10-2, 4.84x10-4) 

 

0.049 

0.057 

1.876 0.056 

lnSD1 
     TG 
     HDL 

 
-0.104 

0.535 

 
(-0.210, 0.002) 
(-0.095, 1.164) 

 

0.055 

0.096 

2.310 0.055 

SD2 
     TG 
     HDL 

 
-4.607 
36.813 

 
 (-8.336, -0.879) 
(14.917, 58.710) 

 

0.016* 

0.001* 

3.478 0.111 

α1 

 
   1.524 0.012 

ApEnt 
     HDL 

 
-0.111 

 
(-0.221, 0.002) 

 

0.046 

1.873 0.028 

ApEnt, approximate entropy; α1, short-term scaling exponent; DBP, diastolic blood 
pressure; FPG, fasting plasma glucose; HDL, high density lipoprotein cholesterol; HF, 
high frequency power; HR, heart rate; HOMA-IR, insulin resistance; LF, low frequency 
power; RMSSD, root mean square of successive differences; SBP, systolic blood 
pressure; SD1, Poincaré plot width; SD2, Poincaré plot length; SDNN, standard deviation 
of normal to normal intervals; TG, triglycerides; TP, total power; WC, waist 
circumference. 
  



77 
 

linear regression to be associated with WC or FPG.  For both MetS+ and MetS- groups, 

mean WC was greater than sex-specific cut-offs for MetS risk, and mean FPG lower than 

MetS thresholds.  Hence, any alterations in these HRV parameters that would have been 

attributed to increased WC as a MetS risk factor may have been equal in both groups. 

The results of this study agree with most others that HRV is reduced in women with 

MetS, but not in men [7,9].  However, some studies have shown alterations in HRV in 

men with MetS [10].  In the present study, the only MetS risk factors that were different 

between men with and without MetS were TG and HDL, with no differences between 

WC, BP or FPG.  Additionally, fitness (VO2max) was higher in men than women.  

Therefore, the MetS+ men may have been healthier than the MetS+ women, which may 

explain why HRV was not reduced in MetS+ men.   

Generally, studies have shown that HRV analysed in both the time and frequency 

domains are reduced in MetS, but differences exist regarding which parameters are 

affected.  One study showed that all time and frequency domain HRV was reduced in 

MetS+ compared to MetS- with the exception of LF/HF [10], while others showed no 

differences at all [11,24].  Another study showed that participants with MetS had 

reductions in only SDNN, HF, LF and VLF [8].  This is similar to the present study, 

which showed reduced lnSDNN and lnLF in MetS+ compared to MetS-, but there were 

no differences in HF.  These finding are important as two longitudinal studies of initially 

healthy populations showed that reduced SDNN, lnLF and lnHF were associated with an 

increased risk of developing coronary heart disease [25,26].  Frequency domain measures 

and SDNN were primarily predicted by TG and HDL in this study, which suggests that 
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management of dyslipidemia may be an important MetS treatment strategy to normalize 

the HRV parameters that predict mortality. 

In this study, lnHF, RMSSD and SD1 were not different between MetS+ and MetS-.  

These HRV parameters are reduced or abolished with atropine administration, suggesting 

a strong contribution from the parasympathetic nervous system [22,27].  Reduced HF is 

predictive of mortality in healthy populations [25,26] and following myocardial 

infarction [2].  Although there were no differences between groups in this study, both 

groups had lower HRV than a healthy population [28].  Our population did not include 

healthy people with no MetS risk factors.  Therefore, parameters reflective of vagal 

activity might actually be more sensitive to disease and the presence of one risk factor 

may be sufficient to alter cardiac autonomic health.  An alternate explanation may be that 

our population was older (average aged 57.1years).  Reductions in HRV parameters 

reflective of vagal activity may have been due to age or other factors rather than presence 

of MetS risk factors as the model to predict HF only explained 7.8% of the variance. 

It is generally accepted that there is no HRV parameter that is reliably indicative of 

sympathetic activity.  A recent review of autonomic activity in MetS reported a strong 

association between sympathetic activity and HR in a MetS population; hence authors 

suggested that HR may be a valid surrogate measure of sympathetic activity [29].  In the 

current study, MetS+ had a higher HR than MetS- in women.  Though more research is 

needed to confirm validity of the measure, this may suggest that sympathetic activity is 

increased in MetS.  Reviews of the literature have shown that sympathetic activity 

measured by norepinephrine spillover and muscle sympathetic nerve activity is increased 

in MetS [14,29,30].  It has been hypothesized that increased sympathetic activity in MetS 
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may be associated with increased insulin resistance.  In this population, both HR and 

HOMA-IR were increased in MetS+ women but not in men.  Interestingly, despite a 

broad range of HOMA-IR, average HOMA-IR indicated normal insulin resistance in both 

MetS+ and MetS-.  This study does not support previous hypotheses that insulin 

resistance was a mechanism involved in alterations in HRV in MetS [15].  Addition of 

HOMA-IR to the multiple linear regression models generally reduced the adjusted R2 

term, suggesting that it actually worsened the fit of the model.  However, for HR and 

lnLF– HRV parameters that arguably may be associated with sympathetic activity – 

addition of HOMA-IR modestly improved the model.  These findings suggest that 

alterations in insulin resistance may be associated with increased sympathetic activity, 

but findings do not support associations between insulin resistance and other HRV 

parameters in MetS. 

Potentially a significant contribution to the discrepancy in results may be that MetS 

components may affect HRV to a different extent.  Liao and researchers [31] showed that 

in patients with multiple metabolic syndrome (defined as any combination of 

hypertension, diabetes and dyslipidemia), there was a general reduction in HRV 

parameters with an increasing number of metabolic disorders in a single individual (with 

the exception of LF/HF, which showed no difference).  However, there were differences 

based on which metabolic risk factors were present.  A combination of hypertension with 

either dyslipidemia or diabetes had additive effects, while a combination of diabetes and 

dyslipidemia had the lowest HRV, with more than simply additive effects [31].  Thus, 

simply the presence (or not) of MetS may not be sufficient to cause alterations in HRV, 

rather, specific combinations of risk factors may be a more important determinant.   



80 
 

Since this was a cross-sectional study causality cannot be inferred.  This study was 

limited to a sample of relatively healthy adults – therefore findings may not be 

generalizable to populations with overt disease.  Participants were not restricted from 

taking medications prior to ECG recording.  Since certain anti-hypertensive medications 

are known to improve HRV, these may have affected our results. 

In conclusion, women with MetS have a less favourable HRV profile than women 

without MetS, but these relationships were not apparent in men.  There is no single MetS 

risk factor that independently predicts all HRV parameters.  Insulin resistance improves 

model fit for HRV parameters that may be associated with sympathetic function, but not 

for HRV parameters classically associated with parasympathetic function. 
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CHAPTER 4 

Diabetes and Technology for Increased Activity (DaTA Study):  The effects of 

exercise and technology on heart rate variability and metabolic syndrome risk 

factors
1
.   

4.1 Introduction 

An increasingly aging, overweight and sedentary population has a greater risk of 

developing cardiovascular disease (CVD) and type 2 diabetes (T2D).  Metabolic 

syndrome (MetS) is a clustering of risk factors including hypertension, dysglycemia, 

dyslipidemia and abdominal obesity.  Clustering of these factors doubles the five-year 

risk of developing CVD and increases the risk of developing T2D five-fold [1].  Expert 

panels have called attention to the importance of targeting the cardiovascular risk factors 

of MetS in order to prevent CVD and T2D [1,2]. 

Heart rate variability (HRV) is a simple, non-invasive measure that can be used to 

quantify autonomic nervous system function [3].  Diminished HRV predicts all cause and 

cardiovascular mortality [4-7], and is associated with MetS risk factors [8-11].  In 

patients with an increased risk of CVD, impaired autonomic function may be especially 

dangerous.  Patients with T2D with low HRV have double the risk of mortality compared 

                                                 

1 The results from this paper have been published:  (1) Stuckey M, Fulkerson R, Read E, Russell-Minda E, 

Munoz C, Kleinstiver P, et al. Remote monitoring technologies for the prevention of metabolic syndrome: 
the Diabetes and Technology for Increased Activity (DaTA) study. J Diabetes Sci Technol 2011;5(4):936-
944.  (2) Stuckey M, Russell-Minda E, Read E, Munoz C, Shoemaker K, Kleinstiver P, et al. Diabetes and 
Technology for Increased Activity (DaTA) study: results of a remote monitoring intervention for 
prevention of metabolic syndrome. J Diabetes Sci Technol 2011;5(4):928-935.  They are reprinted here 
with permission from the journal. 
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to those with normal HRV [4]. There is evidence that lifestyle changes may have positive 

autonomic effects [12-14], but these modifications may not be maintained long-term [15]. 

In Southwestern Ontario, cardiovascular risk is greater and access to healthcare is less in 

rural communities compared to urban centres.  The incidence of obesity, diabetes and 

hypertension is higher in rural areas, specifically Huron County, compared to nearby 

urban centres (London, Ontario) [16].  Additionally, Huron County has a 27.5% vacancy 

rate for general and family practitioners compared to 0% in London and 20.2% vacancy 

provincially in Ontario [17]. 

Remote monitoring technology has the potential to bridge the gap between healthcare 

providers and patients in underserviced areas.  Remote monitoring programs using 

mobile telephones have effectively reduced individual risk factors in a number of studies.  

Submitting home blood pressure (BP) measurements via short message service (SMS; 

text messaging) and/or internet effectively reduced BP in uncontrolled hypertensive 

patients [18] and obese hypertensive patients[19].  Patients with uncontrolled 

hypertension who took BP measurements with a Bluetooth enabled BP monitor which 

transmitted readings through a cellular telephone to a secure database monitored by 

research personnel improved BP control in diabetics with uncontrolled hypertension [20].  

Studies examining remote monitoring of blood glucose via cellular telephone to manage 

diabetes have had promising, but mixed results.  Some research found that glycated 

haemoglobin (HbA1C) decreased [21-24], while one study showed no change [25].   

Recent systematic reviews have examined the utility of remote monitoring technologies 

for behaviour change in diabetic populations [26,27].  These papers agreed that one of the 



86 
 

major shortcomings in the published literature was that the clinical outcome variable was 

measured, but the intended behaviour change was not.  Remote monitoring of behaviour 

change concurrently with physiological measures would allow immediate data 

assessment by practitioners and the ability to provide more appropriate, targeted feedback 

to patients.   

Therefore, the aims of this study were to investigate the feasibility and utility of using 

remote monitoring technology to monitor home BP, blood glucose, HRV and physical 

activity and to examine changes in home and clinic measures following an eight-week 

lifestyle intervention.  It was hypothesized that an intervention to increase physical 

activity supported by home health monitoring technologies, would result in improvement 

in risk factors for CVD and T2D, including MetS risk factors and HRV. 

4.2 Methods  

Twenty-five participants volunteered to participate in this study and provided informed 

consent.  Participants were included if they had at least two MetS risk factors according 

to ATPIII guidelines: waist circumference (WC) ≥ 88cm (women) or 102cm (men); 

resting systolic BP (SBP) ≥ 135 mmHg and/or diastolic BP (DBP) ≥ 85 mmHg; fasting 

plasma glucose (FPG) ≥ 6.1 mmol/L; triglycerides (TG) ≥ 1.7 mmol/L; and high density 

lipoprotein cholesterol (HDL) ≤ 1.03 mmol/L (men) or 1.29 mmol/L (women) [2].  

Exclusion criteria were SBP > 180 mmHg and/or DBP > 110mmHg; type 1 diabetes; 

history of myocardial infarction, angioplasty, coronary artery bypass or cerebrovascular 

ischemia/stroke; symptomatic congestive heart failure; atrial flutter; unstable angina; 

unstable pulmonary disease; use of medications known to affect heart rate (HR) (such as 
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beta blockers), or use of other medication that may interfere with study objectives; 

second or third degree heart block; history of alcoholism, drug abuse or other emotional 

cognitive or psychiatric problems; pacemaker; unstable metabolic disease; and orthopedic 

or rheumatologic problems that could impair the ability to exercise.  One participant 

withdrew from the study shortly following baseline testing due to hospitalization for a 

respiratory illness unrelated to the study.  Twenty-four participants (aged 56.6 ± 9.0y; 6 

male) reported to Gateway Rural Health Research Centre at baseline (V0) and after four 

(V1) and eight (V2) weeks of intervention.  This study was approved by Institutional 

Review Board Services (Aurora, Ontario, Canada; #RP-2008). 

At each visit, BP was measured in the seated position with an automated BP cuff 

(BPTru™, VSM MedTech Ltd., Coquitlam, BC).  Clinic BP was calculated as the 

average of the last two of three measures.  Anthropometric measures included WC 

measured as the midpoint between the lower rib and iliac crest (cm) [28]; body mass 

index (BMI), calculated as weight in kilograms divided by the square of the height in 

metres (kg/m2); and body weight (kg).  Blood was drawn from the anticubital vein and 

samples were sent to a central processing lab for analysis of FPG, lipid profile and 

HbA1C.     

An exercise specialist administered the Step Test Exercise Prescription (STEP™) to 

estimate fitness (VO2max; ml/kg/min) and counsel participants regarding physical activity 

[29].  Participants were instructed to step up and down a set of two steps twenty times at 

a comfortable pace.  HR was measured immediately following the test by palpation of the 

radial artery and input into the prediction equation for calculation of VO2max (Appendix 

1). 
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 A personalized exercise program was prescribed based on the fitness level determined by 

the stepping test and a certified personal trainer helped participants set SMART (specific, 

measurable, attainable, realistic, timed) goals.  Exercise prescription followed American 

College of Sports Medicine [30] guidelines, with a target exercise HR of 70-85% of age 

predicted maximum HR.  Goals included increasing pedometer-monitored steps per day 

with the overall goal of achieving 10,000 steps per day [31].  The exercise prescription 

and goals were updated at V1.   

Home Monitoring  

Participants received a smartphone (Blackberry® Curve 8300, Research in Motion, 

Waterloo, Ontario) equipped with health monitoring software (Healthanywhere™, 

IgeaCare Inc., Markham, Ontario), a Bluetooth™ enabled BP monitor (A & D Medical, 

UA-767PBT, San Jose, California), a glucometer (Lifescan One Touch Ultra2™, 

Milpitas, California, with wireless Bluetooth™ adapter Polymap, PWR-08-03, Tucson, 

Arizona) and a pedometer (Omron, HJ-150, Koyoto, Japan).  One-on-one technology 

training was included at V0 and lasted approximately 30 minutes.  Participants were 

instructed regarding proper use of devices and techniques to get accurate measurements.  

Blood glucose measures were to be submitted twice daily – fasted upon waking and non-

fasted before bed, BP measures were to be submitted three times per week upon waking, 

pedometer steps were to be input nightly, and body weight input weekly.  Real-time 

measurements were sent to a secure central database that was monitored regularly by 

researchers.  Limits were set for blood glucose at 3mmol/L and 15mmol/L, systolic BP 

(SBP) at 60 mmHg and 210 mmHg and diastolic BP (DBP) at 40 mmHg and 120 mmHg.  
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Readings that were outside of these limits triggered alarms that automatically sent a 

message to the study physician’s smartphone to follow up with the participant.   

During the week following V0 and V2 visits, participants received a HR and activity 

monitor (Suunto Memory Belt, Vantaa, Finland), which was worn twice for five minutes 

of seated rest and once for 24 hours.  Data were downloaded from the monitor to a 

personal computer and converted to text files for analysis (Heart Signal Co, Oulu, 

Finland).  Standard deviation of normal to normal R-R intervals (SDNN) was calculated 

from the entire file for both five-minute and 24-hour recordings.  Frequency domain 

analysis was performed on the entire file for five-minute readings, and 24 hour HRV was 

calculated as the average of one hour epochs.  An autoregressive model (order 20) was 

used to estimate power spectrum density for very low frequency (VLF: 0.003-0.04 Hz), 

low frequency (LF: 0.04-0.15 Hz), high frequency (HF: 0.15-0.4 Hz) and total power 

(TP: 0.003-0.4 Hz) [3].  Values were logarithmically transformed to attain normal 

distribution.  Fractal HR dynamics were calculated from the HR time series.  This value 

represents the qualitative characteristics and correlation features of HR behaviour.  The 

root-mean square fluctuations of integrated and detrended data were measured in 

observation windows then plotted against the size of the window on a log-log scale.  The 

slope of the line was calculated (α1) to reflect short term HR behaviour. Recordings with 

less than 80% qualifying beats were excluded from analysis.   

Database and Data Security 

Real-time data were transmitted from the smartphone to the server and database via 

secure internet protocol. Personal identifiers were not stored in the Smartphone.  All 

communication of data between participant devices and the server were encrypted using 



90 
 

secure sockets layer (SSL) certificates before storage.  Data transfers between the 

smartphones and the server were encrypted and only accessible using the Verisign 

certified HTTPS session that employs SSL with a 128-bit encryption across all channels 

for the Smartphone to server (key pair) and server to database. All data were encrypted 

end-to-end according to the latest encryption standards and were authenticated and 

checked for integrity to ensure that data was sent from an authorized source and had not 

been tampered with. All clinical variables were transmitted as numbers only, were not 

accompanied by identifiable information and were linked to participant data once on the 

protected server. 

Access to data was limited to authorized researchers with valid user identification and 

passwords. If a smartphone was lost or needed to be replaced, safeguards (secure link) 

were reprogrammed by changing the participant log in and password to ensure personal 

health information was accessed by authorized personnel only. Healthanywhere accounts 

were also controlled and protected remotely so that if a device was lost accounts were 

deactivated to prevent unauthorized access to participant health information.  

Statistical Analysis 

SPSS software (Version 17) was used for analysis.  Paired t-tests were used to observe 

differences between V0 and V2 measures of BP, FPG, lipid profile, fitness, 

anthropometrics and HRV.  Paired t-tests were also used to examine changes in home 

monitoring data from week 1 to week 8 (average of measures sent in week 1 and week 8, 

respectively).  Mean substitution was used for missing data.  Pearson correlation was 

used to determine whether any relationships existed between MetS risk factors and HRV.  

All results are shown as mean ± standard deviation unless otherwise specified.  
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4.3 Results 

Participant characteristics are shown in table 4.1.  At baseline, participants had 3.46 ± 

1.22 of five metabolic risk factors (range 2 to 5).  Based on ATPIII guidelines for MetS 

[2], 95.8% of participants had abdominal obesity, 91.7% had high BP, 33.3% had 

impaired fasting plasma glucose, 62.5% had high triglycerides and 62.5% had low HDL.  

Six participants had T2D at study enrolment, and one was diagnosed with T2D shortly 

after enrolment by remote monitoring blood glucose measurements and confirmed by 

blood draw results.  

Clinic DBP was reduced from 84±8 mmHg to 80±13mmHg (p=0.046) despite no change 

in clinic SBP (V0: 141±10, V2: 139±19; p>0.05) (Table 4.2).  However, the percentage 

of participants with sufficient BP control, defined according to ATPIII criteria (clinic BP 

less than 130/85 mmHg and not medicated for hypertension) increased from 8.3 to 33.3% 

from V0 to V2.  Similar to clinic BP results, there was no change in remotely monitored 

SBP (Week 1: 136±17 mmHg; Week 8: 132±19 mmHg; p>0.05).  DBP on the other hand 

decreased from 88±12 mmHg in week 1 to 84±10 mmHg in week 8 (p<0.001) (Table 

4.3). 

There was no change in clinic (table 4.2) or home monitored blood glucose (table 4.3).  

Likewise, there were no changes in triglycerides, LDL or HDL (table 4.2).  Total 

cholesterol decreased from 5.48±1.27 mmol/L at V0 to 5.19±1.11 mmol/L at V2  
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Table 4.1:  Participant Characteristics 

Characteristics  

n 24 

Age 56.6±8.9 years 

Number of males 6 (25%) 

Metabolic Syndrome Risk Factors (of 5) 3.46±1.22 

Above Metabolic Syndrome Thresholds:  

Waist Circumference 95.8% 

Blood Pressure 91.7% 

Fasting Plasma Glucose 33.3% 

Triglycerides 62.5% 

High Density Lipoprotein Cholesterol 62.5% 
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Table 4.2:  Clinic values before and after the eight-week intervention 

Clinic measure V0 V2 p-value 

Waist Circumference (cm) 111.5 ± 9.0 107.7 ± 11.6 0.002* 

Systolic Blood Pressure (mmHg) 141 ± 10 139 ± 19 0.475 

Diastolic Blood Pressure (mmHg) 84 ± 8 80 ± 13 0.046* 

Fasting Plasma Glucose (mmol/L) 6.0 ± 2.4 5.5 ± 1.1 0.221 

Triglycerides (mmol/L) 1.80 ± 1.32 1.53 ± 0.74 0.153 

High Density Lipoprotein 
Cholesterol (mmol/L) 

1.34 ± 0.33 1.35 ± 0.40 0.655 

Low Density Lipoprotein 
Cholesterol (mmol/L) 

3.14 ± 1.54 3.13 ± 1.07 0.983 

Total Cholesterol (mmol/L) 5.48 ± 1.27 5.19 ± 1.11 0.009* 

HbA1C (%) 6.0 ± 0.8 5.9 ±0.6 0.182 

VO2max (ml/kg/min) 29.3 ± 5.6 34.7 ± 7.0 <0.001* 
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Table 4.3:  Home monitoring values during week 1 and week 8 of the eight-week 

intervention 

Home Monitoring Measurement WEEK 1 WEEK 8 p-value 

Systolic Blood Pressure (mmHg) 136 ± 15 133 ± 18 0.165 

Diastolic Blood Pressure (mmHg) 88 ± 10 84 ± 9 <0.001* 

Fasted Morning Blood Glucose 
(mmol/L) 

6.7 ± 2.4 6.3 ± 1.2 0.264 

Non-Fasted Evening Blood Glucose 
(mmol/L) 

7.5 ± 2.8 6.9 ± 1.5 0.213 

Pedometer Steps (steps/day) 5671 ± 1989 6757 ± 2455 0.003* 

Body Weight (Kg) 92.7 ± 14.0 92.1 ± 13.8 0.312 
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(p=0.009).  Waist circumference decreased from 111.5±9.0 cm at V0 to 107.7±11.6 cm at 

V2 (p=0.002), but there was no change in body weight (Table 4.3).   

There was an 18% increase predicted VO2max from 29.34±5.60 ml/kg/min at V0 to 

34.68±7.02 ml/kg/min at V2 (p<0.001).  Pedometer steps increased from 5671±2670 

steps/day in week 1 to 6757±3698 steps per day in week 8 (p=0.003).   

Twelve participants had acceptable 24h HRV recordings both V0 and V2 (table 4.4).  

HFnu increased from 24.5±12.0 at V0 to 28.0±12.1 at V2 (p=0.03) and LFnu decreased 

from 75.5±12.0% at V0 to 72.0±12.1 at V2 (p=0.03) (Figure 4.1).  There were no 

changes in other 24h HRV variables.  Thirteen participants had acceptable 5min HRV 

recordings at both V0 and V2 (Table 4.5).  There were no changes in 5min seated HRV 

over the intervention period.  DBP was correlated with 24h LF:HF (R=0.64).  No other 

relationships were seen between BP and HRV variables.  

Compliance to the self-monitoring protocol was high with overall compliance of 

96.8±4.0%.  Compliance for BP readings was 95.0±14.1%; AM blood glucose 

97.3±4.8%; PM blood glucose 97.8±4.7 %; pedometer steps 96.8±3.7%; and body weight 

91.8±11.4%.  A technology survey was administered at V2 to determine comfort with 

technology and attitudes toward remote monitoring.  Despite the fact that only four 

participants had used smartphones prior to the study, only one participant was not 

comfortable using the smartphone for study purposes.  Using a likert scale from 1-4 

(strongly disagree – strongly agree), it was noted that participants were comfortable with 

the devices and that the remote monitoring protocol resulted in an increased sense of 

security (3.58±0.50), assisted participants in adopting new practices to improve wellbeing  
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Table 4.4: 24h heart rate variability (n=12) 

V0 V2 p-value 

RRI 822 ± 127 849 ± 131 0.288 

HR 75 ± 11 72 ± 11 0.075 

SDNN 150.3 ± 68.9 150.8 ± 57.9 0.962 

lnLF 6.39 ± 0.78 6.41 ± 0.85 0.731 

lnHF 5.18 ± 1.00 5.39 ± 1.09 0.107 

LF/HF 3.9 ± 2.0 3.4 ± 2.6 0.223 

α1 1.367 ± 0.175 1.367 ± 0.171 0.982 

α1, short-term scaling exponent; HF, high frequency; HR, heart rate; LF, low frequency; 
RRI, R-R interval; SDNN, standard deviation of normal to normal intervals; TP, total 
power. 
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Figure 4.1:  Changes in 24 hour LFnu and HFnu heart rate variability from V0 

(black bar) to V2 (white bar). n=12; * p=0.03 
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Table 4.5: 5min seated heart rate variability (n=13) 

V0 V2 p-value 

RRI 796 ± 147 867 ± 172 0.06 

HR 78 ± 13 72 ± 13 0.10 

SDNN 58.6 ± 29.7 62.4 ± 32.6 0.70 

LF 848.2 ± 1048.1 888.0 ± 1254.3 0.91 

HF 307.6 ± 638.7 231.5 ± 359.7 0.67 

LF/HF 5.8 ± 4.3 6.9 ± 7.8 0.60 

α1 1.388 ± 0.182 1.448 ± 0.205 0.10 

α1, short-term scaling exponent; HF, high frequency; HR, heart rate; LF, low frequency; 
RRI, R-R interval; SDNN, standard deviation of normal to normal intervals; TP, total 
power. 
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(3.83±0.38), did not take too much time (1.25±0.44) and did not interfere with activities 

of daily living (1.33±0.48). 

4.4 Discussion 

The main finding of this study was that a technology driven, remote health monitoring 

protocol was feasible in a rural population.  Not only was the technology well accepted 

by the participants, but it also resulted in improved fitness, WC, DBP and total 

cholesterol.  Furthermore, physical activity was increased and HRV was modified despite 

the small sample size.   

Previous studies using remote patient monitoring to control BP have primarily shown 

better results than the current study with BP reductions of 9.1-11.0 mmHg SBP and 7.2-

11.2 mmHg DBP [19,20].  This may be in part due to intervention methodology, as one 

trial included weekly feedback with diet and activity recommendations via text message 

[19].  Our participants received an updated physical activity prescription at V1, but the 

weekly tailoring of lifestyle recommendations likely resulted in greater BP reductions.  

The results of the current study were based on a small sample, in which two participants 

had large increases in BP.  Despite the fact that SBP was unchanged, the percentage of 

participants with adequate BP control (defined by ATPIII MetS criteria < 130/85 mmHg 

and not medicated for BP) increased from 8.3 to 33.3%.  Additionally, it has been 

estimated that even a small reduction in DBP of 2 mmHg would result in a 17% decrease 

in the prevalence of hypertension, a 6% reduction in the risk of coronary heart disease 

and a 15% reduction in the risk of stroke or transient ischemic attack [32].  Therefore, the 

4 mmHg decrease in DBP in the current study may have clinical significance.   
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Studies have reported either decreases [21-24] or no change [25] in HbA1C following 

remote blood glucose monitoring interventions with cellular phones, but changes in 

home-monitored blood glucose were not reported in these studies.  The current study 

showed no change in FPG, but baseline values were lower than in comparable studies and 

the intervention period was shorter than other trials.  Additionally, the American College 

of Sports Medicine and American Diabetes Association joint position statement 

recommends 150 minutes of moderate to vigorous activity per week to reduce blood 

glucose [33].  Considering that the pedometer steps only increased 1086 steps/day, 

participants may not have completed a sufficient amount of moderate to vigorous 

physical activity to affect FPG levels.   

Moderate intensity exercise is recommended as a first-line therapy for MetS [28].  A 

recent study examined the effects of a four-week therapeutic lifestyle modification in 

rural women with MetS and showed that the intervention group had significant reductions 

in body weight, WC, TG, FPG, SBP and LDL and increased HDL [34]. These results 

differ from ours and likely result from differences in intervention delivery.  Oh and 

colleagues [34] provided information booklets to participants at the onset of the trial and 

the intervention group attended education and exercise sessions three times per week for 

two hours each time. Education sessions included both nutrition and exercise advice. In 

the present study tailored exercise prescription was provided, but the exercise was 

unsupervised and dietary advice was not given.  Tjønna and colleagues [35] noted greater 

improvements in MetS in a group of patients completing high intensity interval training 

compared to a continuous moderate exercise group, thus reinforcing that higher 

intensities are better for reducing cardiovascular risk.  Our participants were prescribed 
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moderate intensity activity with a target HR of 70-85% of age-predicted maximum. 

Greater improvements may have been elicited from higher intensity activities, but as our 

participants were in an unsupervised setting, moderate intensity was chosen for safety. 

Although only three participants achieved their step goal and averaged 10,000 steps/day 

by week 8, the increase in PA (mean increase of 1086 steps/day) was sufficient to 

improve markers of MetS. This was despite the fact that the population sample remained 

classified as low active based on daily step count [31]. Individual exercise prescriptions 

were tailored to include other activities as well as walking.  Several participants 

participated in physical activities that are not conducive to pedometer monitoring 

including cycling, swimming, and resistance training.  Therefore, activity may have 

increased more than was measured by the pedometer.  The fact that VO2max increased 

18% (5.34 ml/kg/min) over an 8-week intervention period, suggests that activity levels 

increased during the study.  It is also possible that although the increase in steps per day 

was small, the intensity at which the steps were taken may have been greater.  

Participants were taught how to take their radial pulse and instructed to attain their target 

HR (70-85% of age-predicted maximum) during exercise sessions.  Unfortunately, 

activity intensity was not measured by HR monitor or accelerometry, nor was it recorded 

in an exercise journal. 

HRV is an index of autonomic function that has been shown to be reduced in MetS [8-

11].  Aerobic exercise training in hypertensives has been shown to improve HRV [12-

14], though changes in HRV tend to be more apparent during a stressor that induces 

sympathetic stimulation and parasympathetic withdrawal, than during supine rest.  Since 

HRV in the current study was recorded during seated rest, subtle changes in autonomic 
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function may have occurred that our experimental protocol was not sensitive enough to 

detect.  Since this feasibility study analysed home HRV measurements, the five-minute 

HR recordings for seated HRV analysis were not performed under tightly controlled 

laboratory conditions as recommended [3].  As variations in temperature, light, 

movement and breathing frequency can all affect HRV [3], lack of control of these 

factors may be responsible for the lack of change in short-term HRV.   

Compliance to technology use was higher in this trial (96.79 ± 4.01%) than others 

[21,24].  Compliance to a three-month intervention was only 72% [24], and only two of 

fifteen patients submitted all blood glucose and pedometer readings in a three-month pilot 

study [21].  In the present study, four of 24 participants completed all measures and 12 

others missed less than five of an average 207 total readings.  Discrepancies may be due 

to longer intervention period [21,24] and broader age range [24] compared to the present 

study.  The high compliance in this trial may be explained by the age of our sample, as 

older adults have been shown to have greater compliance than younger adults [24].  This 

may be in part because of fewer commitments to care-giving and employment and greater 

interest in disease prevention.  The high compliance to this study may also be a result of 

the short time period.  A four-month study examining home BP monitoring found that 

weekly compliance was high throughout, but tended to decrease in the last four weeks 

[20].  The participants in the present study with lowest compliance were either shift 

workers (n=2) or had family/care-giver commitments (n=1).   

Other research has shown that one of the greatest barriers to the use of technology is the 

time commitment by physicians to monitor the database [20].  Our study required less 

physician intervention as triage of clinically important measurements was automated thus 
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limiting physician burden. Participants also had access to their personal data throughout 

the study that provided self-reflection, goal setting and self-motivation that served as 

positive and negative support. 

This pilot study was conducted in a sample of highly motivated volunteers and may 

therefore lack external validation.  Since there was no control group, it cannot be 

concluded that improvements in health and activity were a result of self-monitoring 

technologies.  However, the purpose of this pilot study was to test the feasibility and 

utility of a remote monitoring and activity protocol in a rural population.  Future 

randomized trials are needed to compare the impact of an exercise prescription alone with 

that of an exercise prescription combined with self-monitoring.  A baseline pedometer 

measurement was not attained prior to exercise prescription.  Therefore, it is likely that 

habitual activity prior to the onset of pedometer monitoring was in fact lower than the 

week 1 measurements obtained in this study.  Despite the fact that only twelve 

participants had acceptable HR data for 24h HRV analysis and thirteen for 5min HRV, 

modifications were seen in LFnu and HFnu.  However, a greater sample size would have 

been ideal and may have shown greater change.  The technology survey was not a 

validated questionnaire.  However, the responses will still be able to direct protocol 

modifications to improve a larger trail. 

In conclusion, an exercise prescription combined with eight weeks of self-monitoring of 

health and activity measures resulted in increased fitness and activity, which improved 

cardiovascular risk profile as demonstrated by reductions in WC, DBP and total 

cholesterol and improved 24h HRV profile with increased HFnu and reduced LFnu. 
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CHAPTER 5 

Effects of a mHealth exercise intervention on heart rate variability and metabolic 

syndrome risk factors in primary care. 

5.1 Introduction 

Cardiovascular diseases (CVD) are the leading cause of death world-wide [1] and type 2 

diabetes mellitus (T2D) is an independent risk factor for CVD.  In 2004, heart disease 

was responsible for 68% and stroke was responsible for 16% of all deaths in patients 

diagnosed with T2D in the United States [2].  Central obesity, high blood pressure (BP), 

dysglycemia and dyslipidemia are some of the major cardiometabolic risk factors 

implicated in the development of CVD and T2D [3,4].  Clustering of these risk factors, 

termed metabolic syndrome (MetS) increases the risk of disease progression more in 

combination than additive risk [3,4].  

Mechanisms associated with the progression from MetS to T2D and CVD are poorly 

understood.  Autonomic dysfunction has been hypothesized to be an important 

component of CVD progression [5,6].  Abnormal cardiac autonomic function, as 

indicated by low heart rate variability (HRV), is associated with increased all-cause and 

cardiovascular mortality in post-myocardial infarction patients [7,8] and with the 

development of T2D in a general population [9,10].  Furthermore, individuals with T2D 

and low HRV were more likely to develop CVD than those with normal HRV values 

[11,12].  Low HRV is also characteristic of MetS populations [13].  Autonomic 

dysfunction is consistently reported in females with MetS, while findings are more 

controversial in males [14-16].  A systematic review showed that MetS risk factors are 
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associated with different HRV parameters and suggested that impaired autonomic 

function, or low HRV, may be an important mechanism in the continuum of CV risk [17]. 

However, to date studies are cross-sectional and associations between longitudinal 

changes in MetS and HRV have not been examined.   

Physical activity is recommended as a first line treatment for MetS [3,4].  Lifestyle 

changes have proved to reduce disease progression [18,19] and long-term follow-up has 

determined that lifestyle changes are more effective than metformin in reducing the 

incidence of T2D [20].  Exercise also improves HRV in the general population [21,22] 

and in T2D [23,24].  These concomitant improvements in MetS risk factors and HRV in 

response to exercise suggest that they may be linked mechanistically.  However, 

longitudinal associations have not been examined.  

Despite the well-known health benefits of physical activity, accelerometer data has 

shown that 85% of Canadians [25] and 90% of Americans [26] do not meet national 

physical activity guidelines.  Electronic health (eHealth) is a relatively new field in which 

electronic medium is used to support health.  While studies are still in their infancy some 

successes have been noted [27].  Mobile health (mHealth) is a branch of eHealth that has 

the potential to be better than general eHealth interventions because of the portability.  

Eighty-five percent of the American population owns a mobile phone, and in this group 

Smartphone ownership has risen from 33% in May 2011 to 53% in November 2012 [28]. 

With the quickly growing number of smartphone users, mHealth interventions allow for 

the potential to act as a trigger for behaviour or to provide information at the time that it 

is needed.  We recently showed that a mHealth supported exercise intervention increased 

activity and improved MetS risk factors in a rural population [29].  Additionally, 
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participants found the technology acceptable and motivational [30].  Despite a small 

sample size and short follow-up period, improvements in 24h HRV were apparent 

(unpublished data; Chapter 4).  However, due to the single group design of the pilot 

study, it is unknown whether the mHealth component had added benefit compared to the 

exercise intervention alone.   

The purpose of this randomized controlled trial was two-fold: 1) to examine associations 

between longitudinal changes in HRV parameters and MetS components; and 2) to 

isolate the mHealth component by comparing the effects of an exercise intervention 

supported by mHealth technology to exercise prescription alone.  We hypothesized that 

changes in MetS components would be associated with changes in HRV parameters and 

that the mHealth supported group would have greater improvements in MetS risk factors 

and HRV than the control group. 

5.2 Methods  

This study was part of a 12-month randomized controlled trial, in which 149 participants 

from rural Southwestern Ontario were block randomized to either the exercise 

prescription plus mHealth technology intervention group (EX+T; n=75) or the exercise 

prescription only active control group (EX-C; n=74).  This paper reports interim results at 

24 weeks.  At screening, participants were required to have a minimum of two of five 

MetS risk factors according to National Cholesterol Education Program – Adult 

Treatment Panel III (ATPIII) criteria – waist circumference ≥ 88cm (women) or 102cm 

(men); systolic blood pressure (SBP) ≥ 135mmHg and/or diastolic BP (DBP) ≥ 85 

mmHg; fasting plasma glucose (FPG) ≥ 6.1 mmol/L; fasting triglycerides (TG) ≥ 1.7 
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mmol/L; fasting high density lipoprotein cholesterol (HD) ≤ 1.29 mmol/L (women) or 

1.02 mmol/L (men) [31].  Exclusion criteria were systolic blood pressure (SBP) > 180 

mmHg and/or diastolic blood pressure > 110mmHg; type 1 diabetes; history of 

myocardial infarction, angioplasty, coronary artery bypass or cerebrovascular 

ischemia/stroke; symptomatic congestive heart failure; atrial flutter; unstable angina; 

unstable pulmonary disease; use of medications known to affect heart rate (HR); second 

or third degree heart block; history of alcoholism, drug abuse or other emotional 

cognitive or psychiatric problems; pacemaker; unstable metabolic disease and orthopedic 

or rheumatologic problems that could impair the ability to exercise.  The study was 

approved by the University of Western Ontario research ethics board (#15828) and 

participants provided informed consent to participate. 

Participants reported to the Gateway Rural Health Research Institute (Seaforth, Ontario) 

at baseline (V0), 12 weeks (V1) and 24 weeks (V2).  Automated BP was measured in the 

supine position (BPTru™, VSM MedTech Ltd., Coquitlam, BC) and the average of the 

last two of three measures was used to determine clinic BP.  WC was measured as the 

midpoint between the lower rib and iliac crest (cm) [32].  Blood was drawn and sent to a 

central laboratory for measurement of FPG, TG and HDL.   

Autonomic testing 

Following a light, standardized snack, participants were instrumented for collection of a 

lead II ECG (Colin Pilot 9200, Colin Medical Instruments, San Antonio, Texas) and 

respiratory rate by belt transducer (Pneumotrace II, ADInstruments, Colorado Springs, 

Colorado) secured around the thorax. Data were collected during ten minutes of supine 
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rest.  External stimuli, such as light and noise were controlled to ensure signal stability.  

Participants were instructed to remain still and awake.  All measures were sampled at 

1000Hz, input into a data acquisition board (PowerLab ML795, ADInstruments) for 

analog-to-digital signal conversion with LabChart7Pro software (ADInstruments) and 

stored for offline analysis.   

Exercise testing and prescription 

Fitness (VO2max; ml/kg/min) was estimated with the Step Test Exercise Prescription 

(STEP™) tool, which has been validated in adults aged 18-85y [33,34].  The full protocol 

has been published elsewhere [35].  Briefly, participants were instructed to step up and 

down a set of two steps twenty times at a comfortable pace.  Heart rate (HR) was 

measured immediately following the test by palpation of the radial artery and age, 

weight, sex, time to complete test and post-test HR were used to calculate predicted 

VO2max (Appendix 1).  Fitness was classified by age, sex and VO2max  as poor, fair, good 

or excellent.  A tailored exercise program including target HR based on fitness level 

[poor =70% maximum age-predicted HR (HRmax); fair = 75% HRmax; good = 80% HRmax; 

excellent = 85% HRmax] was prescribed based on the results of STEP™ and an exercise 

specialist helped participants set SMART (specific, measurable, attainable, realistic, 

timed) goals.  For EX+T, goals included increasing steps per day with pedometer 

monitoring, with the overall goal of achieving 10,000 steps per day.  The exercise 

program and goals were updated at each visit.   

Mobile Health Intervention 
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Participants received a smartphone (Blackberry Curve 8300 or 8530, Research in Motion, 

Waterloo, ON) equipped with health monitoring application (Healthanywhere, BioSign, 

Markham, ON), a Bluetooth enabled BP monitor (A & D Medical, UA-767PBT, San 

Jose, CA), a glucometer (Lifescan One Touch Ultra2™, Milpitas, CA) with Bluetooth 

adapter (Polymap Wireless, PWR-08-03, Tucson, AZ) and a pedometer (Omron, HJ-150, 

Kyoto, Japan).  A group training session (approximately two-hour duration) was 

delivered at V0, during which participants were instructed on proper use of devices and 

techniques to get proper measurements.  FPG and BP measures were to be submitted 

thrice weekly upon waking and pedometer steps were to be input nightly.  Details of data 

transfer, biometric thresholds for alerts and database security are reported elsewhere [30]. 

Heart rate variability analysis 

R-R intervals (RRI) were extracted from continuous ECG recordings for analysis with 

HRV software (Hearts v7, Heart Signal Co., Oulu, Finland). The HR time series was 

edited by a single investigator.  All ECG signals were manually scanned for ectopic or 

non-sinus beats, which were deleted from the time series.  Datasets were excluded from 

analysis when more than 10% of beats were edited.  Time domain HRV analyses 

included HR, SDNN and the root square mean of successive differences (RMSSD).  The 

HRV spectrum was computed with the non-parametric fast Fourier transform method.  

Low frequency (LF: 0.04-0.15Hz), high frequency (HF: 0.15-0.4Hz), LF/HF and total 

power (TP: 0.003-0.4Hz) were examined [36].  These measures are repeatable over short- 

and long-term [37].  Each RRI was plotted against the following one to create a Poincaré 

plot.  The standard deviation of the width (SD1) and length (SD2) were calculated 

[38,39].  The detrended fluctuation analysis method was used to examine fractal 
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characteristics of heart rate fluctuations [40].  The root-mean square fluctuations of 

integrated and detrended data were measured in observation windows and then plotted 

against the size of the window on a log-log scale.  The short-term scaling exponent (α1) 

was calculated from the slope of the line (from 4-11 beats) [41].   

Statistical Analysis 

Baseline characteristics were compared between groups with unpaired t-tests for outcome 

measures with normal distribution or a two sample Wilcoxon test for outcome measures 

that were not normally distributed.  Analysis of covariance (ANCOVA) was used to 

examine differences in mean change between EX+T and EX-C for MetS risk factors, 

fitness, HOMA-IR and HRV parameters with sex and baseline values as covariates.  Age 

was also included as a covariate for HRV parameters.  Paired t-tests were used to 

examine changes from V0 to V2 for the whole population when there were no differences 

between groups for mean change, or for EX+T and EX-C separately when differences 

were shown by ANCOVA.  Multiple linear regression models were used to investigate 

how changes in MetS components predicted changes in HRV, while adjusting for other 

variables and baseline values.  An a priori decision was made to force age, sex, group 

and VO2max into the equation to adjust for potential confounders.  Backwards elimination 

was used to create the most appropriate model.  All MetS components were originally 

included in the model and the least important was serially excluded using the criteria 

p<0.1.  This strategy sought to identify a parsimonious set of predictors for the outcome 

of interest.  Upon completion of the initial model, diagnostics were run to test for 

influential observations and outliers were removed when necessary.  All results are 

shown as mean ± standard deviation for normally distributed data, median (interquartile 
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range; IQR) for non-parametric data, and multiple linear regression results are presented 

as estimate (95% confidence interval; CI), unless otherwise specified.  R statistical 

software was used for analysis [42].   

5.3 Results 

Participant Characteristics 

After removal of incomplete data, 116 participants (62 EX+T; 54 EX-C) were included in 

the final analysis (Table 5.1).  FPG (p=0.008) and HOMA-IR (p=0.010) were higher in 

EX+T compared to EX-C, but groups were otherwise similar. 

Longitudinal changes in metabolic syndrome risk factors and heart rate variability 

parameters 

There was no difference between groups in mean change for any MetS risk factor, 

VO2max or HOMA-IR (p>0.05).  Figure 5.1 shows changes in MetS risk factors over time.  

WC (V0: 103.5±13.2 cm; V2: 99.7±12.4 cm; p<0.001), SBP (V0: 141±19 mmHg; V2: 

131±15 mmHg; p<0.001) and DBP (V0: 86±11 mmHg; V2: 81±9 mmHg; p<0.001) were 

reduced over time across the whole population with no differences between groups 

(p>0.05).  There were no changes in FPG (V0: 5.0(0.8) mmol/L; V2: 5.0(0.6) mmol/L), 

TG (V0: 1.36 (0.96) mmol/L; V2: 1.32(0.91) mmol/L), HDL (V0: 1.40 (0.53) mmol/L; 

V2: 1.38(0.51) mmol/L)  or HOMA-IR (V0: 1.63(1.75); V2: 1.54(2.09)) over time 

(p>0.05).  VO2max increased in the whole population with no differences between 

treatment groups (V0: 30.77±6.22 ml/kg/min; V2: 32.81±6.24 ml/kg/min; p<0.001).  

RMSSD, lnHF and SD1 were reduced at V2 compared to V0 (p=0.048, 0.032 and 0.049,  
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Table 5.1:  Participant characteristics 

 Exercise + Technology Exercise Only p 

N 62 54  

Age (y) 58.0 (14.0) 59.5 (11.8) 0.482 

WC (cm) 105.2±12.6 101.7±13.8 0.151 

SBP (mmHg) 141±20 142±19 0.926 

DBP (mmHg) 86±13 87±10 0.690 

FPG (mmol/L) 5.1 (0.9) 4.9 (0.5) 0.013* 

TG (mmol/L) 1.42(0.76) 1.31 (1.05) 0.791 

HDL (mmol/L) 1.34 (0.57) 1.45 (0.47) 0.312 

HOMA-IR 1.90 (1.66) 1.37 (1.01) 0.010* 

VO2max (ml/kg/min) 30.0±6.3 31.4±6.3 0.236 

DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL, high density 

lipoprotein cholesterol; HOMA-IR, insulin resistance; SBP, systolic blood pressure; TG, 

triglycerides; VO2max, maximal oxygen uptake; WC, waist circumference. 
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Figure 5.1:  Changes in metabolic syndrome risk factors over time. A) waist 

circumference, systolic and diastolic blood pressure; B) fasting plasma glucose, 

triglycerides and high density lipoprotein cholesterol; at V0 (black bar) and V2 

(white bar). * p<0.05 
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respectively), but there were no other significant changes in HRV parameters over time 

(Table 5.2).  

Associations between changes in metabolic syndrome risk factors and heart rate 

variability 

Multiple linear regression (Table 5.3) showed that the change in HR and SDNN were 

associated with the change in WC (p=0.033) and FPG (p=0.048), respectively.  The 

change in α1 was associated with the change in SBP (p=0.045) and TG was included in 

the model to improve the fit (p=0.066).  The change in MetS risk factors over the 

intervention period were not associated with the change in HRV parameters RMSSD, 

lnLF, lnHF, lnTP, LF/HF or SD1. 

5.4 Discussion 

The main findings of this study were that: 1) WC, SBP and FPG were the only MetS 

components that independently predicted changes in HRV, and only changes in HR, 

SDNN and α1 were associated with MetS component changes; 2) RMSSD, lnHF and SD1 

were reduced following the intervention period with no other changes in HRV; and 3) 

WC, SBP and DBP were reduced following the 24-week intervention with no change in 

other MetS risk factors and no differences between treatment groups. 

Previous studies have examined associations between HRV parameters and MetS risk 

factors in cross-sectional studies [13-16].  To our knowledge, this was the first study to 

examine these associations over a longitudinal intervention period.  Interestingly, 
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Table 5.2: Changes in heart rate variability from baseline to 24 weeks 

 V0 V2 p 

HR (bpm) 63±9 62±8 0.099 

SDNN (ms) 45(30) 42(23) 0.371 

RMSSD (ms) 1114(1966) 753(1449) 0.048* 

lnLF (ms2) 6.03±1.07 5.93±0.84 0.270 

lnHF (ms2) 5.87±1.39 5.60±1.00 0.032* 

lnTP (ms2) 7.48±0.90 7.37±7.39 0.183 

LF/HF 1.15(1.77) 1.51(1.86) 0.169 

SD1 (ms) 23.7(20.3) 19.4(17.7) 0.049* 

α1 1.01±0.33 1.06±0.26 0.112 

α1, short-term scaling exponent; HF, high frequency power; HR, heart rate; LF low 
frequency power; RMSSD, root mean square of successive differences; SD1, width of the 
Poincaré plot; SDNN, standard deviation of normal-to-normal intervals; TP, total power. 
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Table 5.3: Multiple linear regression examining contribution of change in metabolic 

syndrome risk factors to change in heart rate variability parameters.  

 Estimate 95% CI p F-statistic Adjusted R2 

HR 
     WC 

 
0.129 

 
(0.011, 0.247) 

 

0.033* 

5.786 0.224 

SDNN 
     FPG 

 
-3.332 

 
(-6.629, -0.035) 

 

0.048* 

6.075 0.2314 

α1 

     SBP 
     TG 

 
-0.003 
-0.038 

 
(-0.006, -7.0x10-5) 
(-0.078, 2.5x10-3) 

 

0.045* 

0.066 

16.58 0.541 

α1, short-term scaling exponent; FPG, fasting plasma glucose; HR, heart rate; SBP, 
systolic blood pressure; SDNN, standard deviation of normal to normal intervals; TG, 
triglycerides; WC, waist circumference. 
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 associations with changes in HRV and MetS risk factors overtime were different than 

cross-sectional associations.  Changes in the HRV parameters that are traditionally 

considered to be reflective of vagal activity during supine rest (RMSSD, HF, SD1) were 

not independently predicted by change in MetS risk factors, though in cross-sectional 

analyses, these HRV parameters were independently predicted by WC and FPG (chapter 

3).  On the other hand, parameters with sympathetic influence, reflecting overall 

variability, or fractal complexity were associated with changes in MetS risk factors.  The 

change in HR was independently predicted by changes in WC.  In the Diabetes 

Prevention Program, a higher baseline HR was related to incident diabetes [10].  

Preliminary results have suggested that HR may be reflective of sympathetic activity in 

MetS population [43].  Abdominal obesity is often considered a cornerstone of MetS, and 

in fact is a mandatory risk factor in some MetS definitions [32].  Visceral fat is 

hypothesized to be one of the major contributors to insulin resistance [44], which is 

associated with sympathetic hyperactivity [45-47].  Together, these findings suggest that 

improvements in abdominal obesity may be responsible for normalization of sympathetic 

activity seen as a reduction in HR.   

Importantly the change in SDNN was independently predicted by the change in FPG.  A 

longitudinal study showed that in T2D, those within the lowest quartile of two-minute 

SDNN had approximately double the risk of incident coronary heart disease and incident 

myocardial infarction compared to those in the higher three quartiles [11].  These 

findings suggest that improvements in FPG would increase SDNN and therefore, 

potentially reduce the risk of cardiovascular complications of T2D.  However, the 
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increased risk with reduced SDNN was not apparent in participants without T2D [11] and 

reduced SDNN did not predict the development of T2D in a general population [9].   

In this study, changes in α1 were independently predicted by changes in SBP, with each 

mmHg decrease in SBP predicting a small, but significant increase in α1.  The breakdown 

of fractal complexity (seen as alterations of α1) are associated with either lack of 

variability or with complete randomness [41,49], both of which are seen in patients with 

advanced disease such as congestive heart failure, complex arrhythmias or post-

myocardial infarction patients [50].  Reductions in SBP are known to lower 

cardiovascular risk and these findings suggest, that mechanistically, it may be related to 

fractal behaviour of heart rate dynamics. 

Previous studies have shown that exercise improves HRV [21-24].  This is contrary to 

our results which showed that RMSSD, lnHF and SD1 – parameters considered primarily 

reflective of vagal activity under resting conditions – were reduced over the 24-week 

intervention period rather than increased as expected.  However, in some studies, resting 

HRV was not a sensitive enough measure to detect subtle changes in autonomic function.  

Improvements in autonomic function were detected when HRV was measured during 

recovery from moderate intensity exercise [51] or when reflex autonomic control was 

assessed by baroreflex sensitivity [52].  Additionally, one study examined the dose 

response of exercise for changes in HRV.  Completing approximately 50% of national 

recommendations for exercise resulted in improvements in lnLF, lnVLF and lnTP, while 

meeting national recommendations or exceeding them by 50% improved all time and 

frequency domain HRV parameters examined except for HR and LF/HF [53].  Although 

the participants in the current study were prescribed exercise according to national 
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physical activity guidelines, it cannot be concluded that targets were met since exercise 

was unsupervised.  Therefore, changes may not have been seen in this study if 

recommendations were not followed appropriately.   

Exercise also has benefits for MetS population and is the recommended first-line 

treatment for cardiometabolic risk factors [4].  A recent meta-analysis of exercise effects 

on cardiovascular risk factors in T2D showed that aerobic exercise resulted in reduced 

glycated hemoglobin (a measure of glycemic control over the past 12 weeks), SBP and 

TG, with no changes in HDL or WC [54].  This paper did not examine changes in either 

FPG or DBP.  Our intervention may have failed to change FPG as the mean was within 

healthy limits and only seven individuals (6%) had a FPG > 6.1mmol/L to qualify as a 

risk factor.  Similarly, the mean TG was also within a healthy range.  On the other hand, 

SBP and DBP were elevated outside normal ranges (>135/85) at V0 and therefore had 

greatest potential for improvement.   

This intervention used the STEP™ tool for exercise counseling, which has proved to 

effectively increase fitness and improve MetS risk factors [35].  Indeed, the 7% and 6% 

reductions in SBP and DBP, respectively, are similar to changes that have been seen with 

other interventions using STEP™ [35] and are in line with changes in BP with exercise in 

hypertensive populations [55].  The 7% increase in VO2max was lower than other studies 

employing the STEP™ intervention [35], which suggests that exercise goals may not 

have been met and may explain in part lack of change of some MetS risk factors.   

Contrary to our hypothesis, there were no differences between EX+T and EX-C.  A six-

month lifestyle intervention including health monitoring, counseling, education, exercise 
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and diet improved WC to a greater extent in the intervention compared to the control 

group, with no differences in other MetS risk factors [56].  The addition of diet to the 

intervention is likely responsible for the improvements in WC.  Another study examined 

an eHealth-based intervention which included monitoring of BP, steps and body fat; a 

four-week education module; telephone counseling; and text and email messages for six 

months [57].  After six months, all MetS risk factors had improved except for HDL; 

however, this was a pilot study, so a control group was not included [57].   

Two systematic reviews have had conflicting results regarding the effectiveness of 

eHealth on physical activity and weight loss [27,58].  A review of eHealth interventions 

showed that only three of thirteen studies showed improvements in physical activity [27], 

while a review of SMS studies showed that three of three studies successfully increased 

physical activity and eleven of fourteen studies resulted in weight loss [58].  mHealth 

may be more effective than other types of eHealth interventions due to their portability 

and convenience and their ability to trigger behaviours or provide support at the 

appropriate time.  Since the participants in our intervention primarily used their 

smartphone as a data portal for submitting measures, the full potential of the smartphone-

based intervention may not have been realized.  Telemonitoring of blood pressure [59] 

and self-management of blood glucose via mobile phone [60] is more effective than usual 

care.  This mHealth intervention may not have had as much success as it was essentially a 

self-management protocol with little interaction between the research team and 

participants. Other mHealth interventions have used text messaging for feedback and 

encouragement throughout the study.  While participants attended an intensive training 
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session, more regular contact (either automated or personalized) may have increased the 

success of the intervention.  

This study was limited to a small, rural population presenting with MetS risk factors; 

therefore, results may not be generalizable to urban or other populations.  Since the 

exercise was unsupervised and pedometer steps were self-reported, the actual amount of 

exercise completed cannot be confirmed.  Additionally, since dietary changes were not 

tracked, some participants may have chosen to change their diet, which may have 

contributed to positive changes in MetS risk factors and HRV, and these would not be 

accounted for in the analysis.  Although there is some evidence that HR may be 

indicative of sympathetic activity in MetS [43], direct measures such as measurement of 

muscle sympathetic nerve activity would have been ideal.  However, these measures are 

expensive, time consuming and impractical for large populations. 

In conclusion, this six-month intervention showed that changes in HR, SDNN and α1 

were associated with changes in MetS risk factors, but HRV parameters more specifically 

indicating vagal activity were not.  These associations were seen despite the fact that 

HRV was not improved by the intervention and the only MetS risk factors that were 

improved were WC, SBP and DBP.   
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CHAPTER 6 

Thesis Summary, Discussion and Conclusions 

6.1 Summary of the Thesis 

6.1.1 Associations between heart rate variability and metabolic syndrome risk 

factors 

The purpose of this thesis was to examine relationships between heart rate variability 

(HRV) and metabolic syndrome (MetS) risk factors.  Chapter 1 was a review of the 

literature, which discussed cardiometabolic risk and proposed that based on prognostic 

value and relationships with MetS risk factors, HRV may have potential as a novel 

cardiometabolic risk factor.  Studies examining associations between HRV and MetS 

were identified and synthesis of results was recommended. 

Chapter 2 was a systematic review with the purpose of describing studies to date 

examining the associations between MetS and HRV.  This paper showed that HRV was 

reduced in women with MetS, though findings were inconsistent in men.  This paper also 

noted that most HRV indices were not reduced until three or more MetS components 

were present – only 24-hour short-term scaling exponent (α1) and five-minute standard 

deviation of normal-to-normal intervals (SDNN) were altered with less than three 

components.  Associations between individual MetS risk factors and HRV parameters 

were also reviewed in this paper.  It was concluded that associations between MetS risk 

factors and HRV parameters varied depending on the population and that greater 

consistency in methodology was needed.  Additionally, it was suggested that associations 

with insulin resistance should be further investigated.  
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Chapter 3 was a cross-sectional examination of the associations between HRV, MetS risk 

factors and insulin resistance.  HRV was not lower in MetS compared to those without 

MetS in men.  In women, however, HRV was generally lower in MetS, but there were no 

differences in HRV parameters reflective of vagal activity.  HRV parameters reflective of 

parasympathetic activity were independently predicted by waist circumference (WC) and 

fasting plasma glucose (FPG), while those reflecting overall variation were predicted by 

triglycerides (TG) and high density lipoprotein cholesterol (HDL).  Insulin resistance was 

only associated with heart rate (HR) 

Chapter 5 was a 24-week intervention study, which showed that the changes in MetS risk 

factors were generally not associated with changes in HRV parameters.  The change in 

WC was associated with the change in HR; the change in SDNN was associated with the 

change in FPG; and the change in α1 was associated with the change in systolic blood 

pressure (SBP).   

6.1.2 Exercise intervention as a cardiometabolic risk modifier 

Chapter 1 also reviewed the role of exercise as a cardiometabolic risk modifier.  

Generally, exercise and physical activity have proved to reduce WC and blood pressure 

(BP) and increase HDL in MetS [1].  Studies examining the effects of exercise on HRV 

are equivocal with some interventions improving HRV [2-5], while others had no effects 

[6].  Exercise prescription may be an important factor.  Evidence suggests that frequency 

of training may be important to effectively modify HRV, while intensity and duration 

may be less important.   
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Novel interventions for improving exercise uptake were also examined.  The Step Test 

and Exercise Prescription (STEP) test has effectively modified both traditional and novel 

cardiometabolic risk factors [7] and was the only exercise counseling intervention in 

primary care that improved fitness [8].  Mobile health (mHealth) interventions were also 

reviewed, which showed promise as a tool for self-management for weight loss, physical 

activity and diabetes management.  It was suggested that a unique intervention combining 

exercise prescription and self-management with mHealth technology had potential as an 

intervention to reduce cardiometabolic risk. 

Chapter 4 was a pilot study to determine the feasibility and utility of an intervention 

utilizing the STEP intervention supported by self-management with a mHealth 

application.  Twenty-four participants with at least two MetS risk factors volunteered for 

this study, which proved that the intervention was feasible and acceptable in a rural 

population.  Despite the short intervention length (eight weeks), WC, DBP and total 

cholesterol were reduced and fitness and physical activity were increased [9,10].  The 

high (HF) and low frequency (LF) powers of HRV in normalized units were altered 

following the intervention and DBP was correlated with LF/HF, but there were no other 

changes in HRV or correlations between HRV and MetS risk factors.  Despite these 

promising changes, it remained unclear whether the mHealth intervention was of any 

added benefit compared to the exercise prescription alone.   

Chapter 5 was a randomized controlled trial comparing the effects of a 24 week mHealth 

supported exercise intervention to standard of care exercise advice with STEP.  

Participants with two or more MetS risk factors were randomly allocated to either an 

intervention (n=75) or active control (n=74) group.  The intervention group received the 
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mHealth supported exercise intervention described in chapter 4, while the control group 

received only the exercise testing and prescription. Over the 24-week intervention period, 

there were no differences in changes between the intervention and control groups.  WC, 

SBP and DBP were reduced with no changes in other MetS risk factors.  Root mean 

square of successive differences (RMSSD), lnHF and Poincaré plot width (SD1) were 

reduced over the intervention period with no changes in other HRV parameters.   

6.2 Discussion and Future Directions 

Recent reviews discussed cardiac autonomic function in the progression of type 2 

diabetes mellitus (T2D) [11,12].  The reviews hypothesized that vagal modulation is 

reduced initially at the onset of disease and is in fact the first sign of autonomic 

dysfunction.  The results of this thesis showed that in a population with or without MetS, 

there were no differences in vagal indices RMSSD, lnHF or SD1. This suggests that 

either vagal indices are reduced before even development of one risk factor and therefore, 

no differences are apparent between groups, or that vagal changes occur later in the 

progression of disease.  Unfortunately, since this thesis did not include a population of 

healthy individuals with zero MetS risk factors, this cannot be determined.  Over a 24-

week intervention that improved BP, vagal HRV indices RMSSD, lnHF and SD1 were 

reduced.  There were no mean changes in MetS status, so the reduction in vagal HRV 

indices over time may have been indicative of disease progression despite improvements 

in some MetS components (Chapter 5).  Additionally, WC and FPG were primarily 

associated with all three vagal indices (Chapter 3), suggesting that these two MetS 

components may be important in the treatment of cardiometabolic risk.  The Diabetes 

Prevention Program Outcomes Study showed that the risk of developing T2D was 56% 
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lower for participants in whom FPG was reduced to normoglycemia compared to those 

with persistently elevated FPG [13].  Reduced SDNN has been shown to be a predictor of 

mortality and changes in SDNN were related to changes in FPG (Chapter 5), though in a 

cross-sectional examination SDNN was predicted by lipid profiles (Chapter 3).  Future 

studies should examine the importance of cross-sectional versus longitudinal change 

associations between HRV parameters and MetS risk factors. 

Although parasympathetic dysfunction has been implicated as the first sign of disease, 

the results of this thesis suggest that alterations in HRV associated with overall variation, 

complexity and perhaps sympathetic activity may be a better indicator of MetS.  Vagal 

indices may already be reduced with the presence of one risk factor, making it a poor 

indicator of disease progression.  However, in cross-sectional studies, only SDNN and α1 

were reduced when less than three MetS risk factors were present (Chapter 2).  Evidence 

suggests that increased sympathetic activity may be present in MetS and that it may, in 

fact be mechanistically linked directly to insulin resistance and the progression of disease 

[14-16].  The studies included in this thesis were not designed to measure sympathetic 

activity directly.  Other studies have shown that norepinephrine spillover and muscle 

sympathetic nerve activity are increased in MetS [15,16].  The current study showed that 

heart rate was increased in MetS compared to those without and preliminary findings 

have suggested that heart rate may be a surrogate measure of sympathetic activity in 

MetS [14].     

Exercise interventions have shown promise in improving MetS and HRV.  The DaTA 

study (chapter 4) showed some improvements in MetS risk factors and 24h HRV 

parameters over eight weeks, but over a 24-week intervention period (chapter 5) some 
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MetS risk factors were improved, but 5min resting HRV parameters reflective of vagal 

activity were actually lower instead of higher as expected.  VO2max was increased 18% in 

chapter 4, but only 7% in chapter 5.  These differences in fitness improvements may be 

responsible for inconsistent findings.  Aerobic fitness is protective against mortality [17] 

and improvements in autonomic function accompanying increased fitness may play a 

role. 

 Exercise is known to have positive health benefits beyond those directly associated with 

HRV.  Intensive lifestyle intervention programs reduced the risk of developing T2D in 

prediabetes and changes were maintained over a long-term follow-up, though there was a 

strong relationship between reduced disease progression and continuance of lifestyle 

intervention behaviours [18].  These finding highlight the importance of post-program 

support for long-term maintenance.  Knowledge translation activities are important to 

translate research protocols into useable programs.   

mHealth applications have the potential to reach a broad population and provide a 

convenient and effective medium for delivery of interventions.  Although there is a 

growing body of literature in this field, studies to date are heterogeneous with respect to 

study population, intervention delivery and reported outcomes.  With rapid technological 

developments it is difficult to plan and implement robust clinical mobile health trials 

within the current research environment before technology is outdated.  Many published 

mHealth interventions do not use the technology to its full potential and better results 

may be realized by utilizing as many smartphone features as possible in an intervention.  

Future research should examine published literature to determine the most beneficial use 

of mobile technology for optimal health results.  Smartphone applications are being 
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developed at a fast rate, with many aimed at health and behaviour management.  

However, a review cautioned that few applications are based in theory [19] and that the 

success of mobile health interventions could be maximized by developing evidence-based 

applications specific to population needs.  This will be important if mHealth becomes 

integrated into clinical practice in the future. 
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APPENDIX 1: 

The STEP™ Protocol 

The STEP™ Protocol includes two basic components: the stepping fitness test and an 

exercise prescription. 

Part A: The stepping fitness test 

Begin the stepping fitness test by demonstrating the stepping pattern to patients: stepping 

one foot at a time up both steps and back down again (“up, up, together, down, down, 

together”). Emphasize that only one foot is on the middle step at any one time.  Also 

remind the patient that one step is counted after stepping up to the top step and returning 

back down to the starting position. Instruct the patient to complete 20 consecutive 

stepping cycles at a self-selected normal pace (similar to the pace they would use to 

climb stairs). When the patient is ready to begin, start the timer as their first foot leaves 

the ground. During the test, count each step aloud as they complete it. Offer 

encouragement and watch for signs of fatigue or balance problems (or any signs of 

concern for their safety). Although the individual self-selects the pace to complete the 

stepping test, encourage them to maintain a consistent speed. For example, if they are 

“racing” through it, be sure to encourage the patient to slow down to ensure valid results. 

As the patient performs the last step, be prepared to take their heart rate when they 

complete the test. Take the post-exercise heart rate, palpating radially in a 6 second 

count. The patient can rest while you complete the equation for predicted aerobic 

capacity.  
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Part B: Exercise prescription 

Calculate the patient’s target training heart rate, using 70-85% of their age-predicted 

maximal heart rate as a target.  Generally, individuals with lower aerobic fitness levels 

should be advised to stay at the lower end of their target HR zone (70%). Those with high 

fitness levels should be encouraged to aim for the higher range (80-85%) depending on 

their current physical activity/exercise regimes and their limitations. 

Complete the exercise prescription note for the patient, including: date of test, predicted 

VO2max, target training heart rate (including beats per minute and beats in 10 seconds), 

and frequency of activity. (Appendix Figure 1) It is helpful to provide patients with a 

copy of Canadian physical activity guidelines during this process, which highlight that 

Canadian adults should aim for at least 150 minutes of moderate- to vigorous-intensity 

physical activity each week and that this can be accumulated in a minimum of 10-minute 

bouts (CSEP, 2011). During the exercise prescription process, it can be helpful to 

describe the term VO2max as well as training heart rate to patients. The definitions below 

have been applied for this purpose. 

� VO2max is a measure of your cardiorespiratory (or aerobic) fitness. It is a score 

of how well your heart, lungs, and muscles work together. The higher this number 

is, the more fit you are. You can become more fit by increasing your aerobic 

physical activity. Some examples of aerobic physical activity include walking, 

swimming, or shovelling the driveway. 

� Training Heart Rate – In order to improve your fitness, it is important to check 

your heart rate during physical activity. This training heart rate has been 
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prescribed specifically for you based on your exercise results. The easiest way to 

check your pulse is to count how many times you feel your heart beat in 10 

seconds. 
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Appendix Figure 1: STEP Worksheet 

 

 

STEP™ Test  

Calculation Worksheet 

Participant Data: 

Sex (male=1, female=2)  

Age (years)  

Weight (kg)  

Time required for STEP test (sec)  

Heart Rate after STEP test (bpm)  

 

Calculations: 

Step Calculation Answer 

1 (1511/time)*weight/heart rate = 

2 ([Ans Step1] *0.124) – (age*0.032) – (sex*0.633) + 3.9 = 

3 ([Ans Step 2] *1000)/weight = 

 ���� VO2max 

 

 

  



143 
 

Appendix Figure 2: STEP Exercise Prescription 

  

Date: ____________________ 

 

VO2max: ____________________ ml/kg/min 

 

Classification:       
Needs Improvement      Fair     Good    Excellent 

 

Training Heart Rate:  ____________________ beats/min 

____________________ beats in 10 sec 

 

Type of activity: ________________________________________ 

You should try to be active on most days of the week, and include activities 
that strengthen muscles and bones on 2 days of the the week.  

 

Time: Complete a minimum of 10 minutes per session, to reach a total of at 
least 150 minutes per week to achieve health benefits. 

 

Interrupt time sitting still every 20 minutes 

  

EXERCISE  PRESCRIPTION 



144 
 

APPENDIX 2 

Certificate of Ethics Approval 

 



145 
 

CURRICULUM VITAE 

Name: Melanie I. Stuckey 
 

Post-secondary 
Education and 
Degrees: 

Ph.D. Kinesiology 
Western University 
London, Ontario 
2007-present 
 
M.Sc. Kinesiology 
McMaster University 
Hamilton, Ontario 
2005-2007 
 
B.Sc. (Hon) Kinesiology 
Western University 
London, Ontario 
2001-2005 
 

Honour, Awards and 
Distinctions: 

MITACS Accelerate Internship Award 
2011-2012 
 
Ontario Research Coalition Early Researcher Award 
2010-2011 
 
Ontario Graduate Scholarship in Science and Technology 
2010-2011 
 
Ontario Kinesiology Association Volunteer Award 
2010 
 
London Life Studentship in Stroke Rehabilitation 
2008-2010 
 
The Canada Life Assurance Company Graduate Scholarship 
(OGSST) 
2005-2006 
 

Related Work 
Experiences: 

Co-coordinator 
Let’s Talk Science Partnership Program 
Western University, Faculty of Science 
2009-2012 
 
Teaching Assistant 
Western University, School of Kinesiology 
2009-2011 



146 
 

 
Research Assistant (Visiting Graduate Student) 
Université de Franche-Comté, Pathophysiologie et Prévention 
Cardiovasculaire 
2008 
 
Research Associate 
London Health Sciences Centre 
Cardiac Rehabilitation and Secondary Prevention 
2008 
 
Teaching Assistant  
McMaster University 
Department of Kinesiology 
2005-2007 
 

Publications 
(Articles Published) 

Stuckey MI, Knight E, Petrella RJ.  The Step Test and Exercise 
Prescription tool in primary care – a critical review. Crit Rev Phys 

Rehabil Med. 2012. 24(1-2):109-123 

Stuckey MI, Tordi N, Mourot L, Gurr LJ, Rakobowchuk M, 
Millar PJ, Toth R, Macdonald MJ, Kamath MV. Autonomic 
recovery following sprint interval exercise. Scand J Med Sci 

Sports. 2012. 22(6):756-763. 

Stuckey M, Fulkerson R, Read E, Russell-Minda E, Munoz C, 
Kleinstiver P, Petrella R.  Remote monitoring technologies for the 
prevention of metabolic syndrome: the Diabetes and Technology 
for Increased Activity (DaTA) study.  J Diabetes Sci Technol. 
2011. 5(4):936-44. 

Stuckey M, Russell-Minda E, Read E, Munoz C, Shoemaker K, 
Kleinstiver P, Petrella R.  Diabetes and Technology for Increased 
Activity (DaTA) study: results of a remote monitoring 
intervention for prevention of metabolic syndrome.  J Diabetes 

Sci Technol. 2011. 5(4):928-35. 

Rakobowchuk M, Stuckey MI, Millar PJ, Gurr L, MacDonald MJ 
(2009).  Effect of acute sprint interval exercise on central and 
peripheral artery distensibility in young healthy males. Eur J Appl 

Physiol. 105(5):787-95.   
 

(Book Chapters) Stuckey MI, Tulppo M, Petrella RJ.   Autonomic dysfunction in 
stroke.  In Heart Rate Variability (HRV) Signal Processing: 
Clinical Applications.  Eds. Adrian Upton, Mari A. Watanabe and 
Markad V. Kamath. CRC Press, Taylor and Francis LLC, USA, 



147 
 

2013 
 
Stuckey MI, Chudyk AM, Petrella RJ.  Anthropometry of 55-75 
year olds in response to exercise.  In Handbook of 
Anthropometry:  Human form in Health and Disease.  Ed. Victor 
Preedy.  Springer Publishing, New York, NY, 2012. 
 

Published Abstracts 
and Conference 
Presentations: (last 3 
years) 

Cook S, Stuckey MI, Petrella RJ.  Implementing the Healthesteps 
program for healthy living in family health teams.  Association of 
Family Health Teams of Ontario Annual Meeting, Oct 16, 2012.  
(Workshop Presentation). 
 
Stuckey MI, Shapiro S, Sabourin KJ, Petrella RJ.  Acceptability 
and feasibility of remote monitoring for diabetes prevention.  
American Diabetes Association 72nd Scientific Sessions, 
Philadelphia, PA, USA, June 8-12, 2012.  (Poster Presentation) 
 
Foisey L, Cook S, Intzandt B, Stuckey M, Petrella R.  Engaging 
and enabling rural communities in chronic disease prevention: the 
Healthesteps Program.  American College of Sports Medicine 
Annual Meeting, San Francisco, CA, USA, May 30-June 2, 2012  
(Poster Presentation) 
 
Stuckey MI, Shaprio S, Sabourin KJ, Intzandt B, Miskie D, 
Munoz C, Petrella RJ.  Remote health monitoring to increase 
activity and reduce metabolic risk factors in a rural population.  
eHealth 2012, Vancouver, BC, Canada, May 27-30, 2012. 
(ePoster Presentation) 
 
Stuckey MI, Shapiro S, Sabourin KJ, Munoz C, Petrella RJ.  
Remote monitoring technology to improve blood pressure in a 
rural population.  World Congress of Exercise is Medicine, 
Denver, CO, USA, May 31-June 4, 2011.  (Poster Presentation) 
 
Stuckey MI, Shapiro S, Sabourin KJ, Munoz C, Petrella RJ.  
Effects of a 12-week remote health monitoring intervention on 
metabolic syndrome risk factors.  Canadian Obesity Summit, 
Montreal, QC, Canada, April 28-May1, 2011.  (Oral Presentation) 
 
Stuckey MI, Russell-Minda E, Kiviniemi A, Fulkerson R, Read 
E, Munoz C, Petrella RJ.  Exercise and remote monitoring to 
improve blood pressure and heart rate variability in a rural 
population. The 23rd Scientific Meeting of the International 
Society of Hypertension, Vancouver, BC, Canada, September 26-
30, 2010.  (Poster Presentation) 
 



148 
 

Stuckey MI, Russell-Minda E, Fulkerson R, Read E, Munoz C, 
Petrella RJ.  Physical activity and remote blood pressure 
monitoring to reduce the risk of cardiovascular disease in a rural 
population.  World Congress on Heart Disease, Vancouver, BC, 
Canada, July 24-27, 2010.  Journal of Heart Disease 2010; 7(1): 
40. (Poster Presentation) 
 
Stuckey MI, Russell-Minda E, Fulkerson R, Read E, Munoz C, 
Petrella RJ.  The Diabetes and Technology for Increased Activity 
(DaTA) Pilot Study:  Remote health monitoring technologies 
decrease risk factors for cardiovascular complications and 
diabetes.  American Diabetes Association 70th Scientific Sessions, 
Orlando, FL, USA, June 24-28, 2010.  (Published abstract) 
 
 

Invited Lectures: Fogg Behaviour Model 101- Introduction to an Industry-Based 
Persuasive Design Model and its Application for Health Research.  
Physical Therapy Seminar Series, Western University.  London, 
Ontario, November 5, 2012. 
 
Fogg Behaviour 201.  Lawson Health Research Institute, Aging, 
Rehabilitation and Geriatric Care Research Centre LAYRS 
student luncheon.  London, Ontario, August 30, 2012. 
 
Fogg Behaviour 101.  Lawson Health Research Institute, Aging, 
Rehabilitation and Geriatric Care Research Centre LAYRS 
student luncheon.  London, Ontario, August 16, 2012. 
 
Baby steps to a healthier future:  Designing for behaviour in 
health research.  Mobile Health 2012: Baby Steps to a healthier 
future.  Stanford University, Palo Alto, California May 17, 2012. 
 
Heart rate variability in metabolic syndrome.  Western University 
School of Kinesiology Bioscience Graduate Seminar.  London, 
Ontario March 26, 2012. 
 
Effects of a 12-week home monitoring intervention on metabolic 
risk factors.  Lawson Health Research Institute, Aging, 
Rehabilitation and Geriatric Care Research Centre LAYRS 
student luncheon.  London, Ontario May 11, 2011. 
 
Remote monitoring and cardiovascular risk.  The University of 
Western Ontario School of Kinesiology Bioscience Graduate 
Seminar.  London, Ontario February 28, 2011. 
 
Love your heart:  The ARTEMIS project.  Canadian Centre for 



149 
 

Activity and Aging Research to Action Conference.  London, 
Ontario June 18, 2010. 
 
Effects of exercise rehabilitation on cardiovascular risk factors in 
stroke survivors.  La Première Journée “Cœur-Vaisseaux”.  Le 
Club Vasculaire, Université de Franche-Comté.  Besancon, France 
November 25, 2008. 
 
Autonomic nervous system recovery following supra-maximal 
exercise.  Hamilton Autonomic Symposium.  Hamilton, Ontario 
May 17, 2007. 

 


